Search results for " diffusion"
showing 10 items of 521 documents
Diffusive equilibrium properties of O2 in amorphous SiO2 nanoparticles probed via dependence of concentration on size and pressure
2014
An experimental study on the diffusive equilibrium value of interstitial O2 in silica nanoparticles was carried out on samples with average particles diameter 40, 14, and 7 nm. The investigation was performed by measuring the concentration of interstitial O2 by Raman and photoluminescence techniques. The dependence of diffusive equilibrium concentration on pressure and temperature was investigated in the pressure range from 0.2 to 76 bar and in the temperature range from 98 to 244 °C. The equilibrium concentration of interstitial O2 follows Henry’s law at pressures below 13 bar whereas a departure from this model is observed at higher pressures. In particular, O2 concentration saturates abo…
Photoluminescence and diffusion properties of O2 molecules in amorphous SiO2 nanoparticles
2013
An experimental study by Raman and Photoluminescence (PL) spectroscopies on the emission and diffusion properties of O2 molecules in amorphous SiO2 nanoparticles of commercial origin with diameters from 14 to 40 nm is reported. Stationary and time resolved PL measurements have been carried out to characterize the Near Infrared (NIR) emission at 1272 nm of O2. Emission features similar to those of bulk silica systems with a sharp PL band and excitation channels in the NIR, at 1070 nm, and in the visible, at 765 and 690 nm are found, with peculiarities arising from embedding O2 in nanostructures. The study of the NIR PL lifetime as a function of temperature down to 10 K enabled to reveal the …
Can we use time-resolved measurements to get Steady-State Transport data for Halide perovskites?
2018
Time-resolved, pulsed excitation methods are widely used to deduce optoelectronic properties of semiconductors, including now also Halide Perovskites (HaPs), especially transport properties. However, as yet, no evaluation of their amenability and justification for the use of the results for the above-noted purposes has been reported. To check if we can learn from pulsed measurement results about steady-state phototransport properties, we show here that, although pulsed measurements can be useful to extract information on the recombination kinetics of HaPs, great care should be taken. One issue is that no changes in the material are induced during or as a result of the excitation, and anothe…
A partially reflecting random walk on spheres algorithm for electrical impedance tomography
2015
In this work, we develop a probabilistic estimator for the voltage-to-current map arising in electrical impedance tomography. This novel so-called partially reflecting random walk on spheres estimator enables Monte Carlo methods to compute the voltage-to-current map in an embarrassingly parallel manner, which is an important issue with regard to the corresponding inverse problem. Our method uses the well-known random walk on spheres algorithm inside subdomains where the diffusion coefficient is constant and employs replacement techniques motivated by finite difference discretization to deal with both mixed boundary conditions and interface transmission conditions. We analyze the global bias…
Dynamics of single semiflexible polymers in dilute solution
2016
We study the dynamics of a single semiflexible chain in solution using computer simulations, where we systematically investigate the effect of excluded volume, chain stiffness, and hydrodynamic interactions. We achieve excellent agreement with previous theoretical considerations, but find that the crossover from the time τb, up to which free ballistic motion of the monomers describes the chain dynamics, to the times W−1 or τ0, where anomalous monomer diffusion described by Rouse-type and Zimm-type models sets in, requires two decades of time. While in the limit of fully flexible chains the visibility of the anomalous diffusion behavior is thus rather restricted, the t3/4 power law predicted…
The relaxation dynamics of a viscous silica melt: II The intermediate scattering functions
2001
We use molecular dynamics computer simulations to study the relaxation dynamics of a viscous melt of silica. The coherent and incoherent intermediate scattering functions, F_d(q,t) and F_s(q,t), show a crossover from a nearly exponential decay at high temperatures to a two-step relaxation at low temperatures. Close to the critical temperature of mode-coupling theory (MCT) the correlators obey in the alpha-regime the time temperature superposition principle (TTSP) and show a weak stretching. We determine the wave-vector dependence of the stretching parameter and find that for F_d(q,t) it shows oscillations which are in phase with the static structure factor. The temperature dependence of the…
Static and dynamic properties of a viscous silica melt
1999
We present the results of a large scale molecular dynamics computer simulation in which we investigated the static and dynamic properties of a silica melt in the temperature range in which the viscosity of the system changes from ${O(10}^{\ensuremath{-}2})$ P to ${O(10}^{2})$ P. We show that even at temperatures as high as 4000 K the structure of this system is very similar to the random tetrahedral network found in silica at lower temperatures. The temperature dependence of the concentration of the defects in this network shows an Arrhenius law. From the partial structure factors we calculate the neutron scattering function and find that it agrees very well with experimental neutron scatte…
A Radiation Fog Model with a Detailed Treatment of the Interaction between Radiative Transfer and Fog Microphysics
1990
Abstract A one-dimensional radiation fog model is presented which includes a detailed description of the interaction between atmospheric radiative transfer and the microphysical structure of the fog. Aerosol particles and activated cloud droplets are treated using a two-dimensional joint size distribution whereby the activation process of aerosols is explicitly modeled. For this purpose a new positive definite semi-Lagrangian advection scheme is developed that produces only small numerical diffusion and is numerically very efficient. For the radiative calculations, time dependent attenuation parameters are determined from the actual particle size distributions. The diffusional growth of the…
Single trajectory characterization via machine learning
2020
[EN] In order to study transport in complex environments, it is extremely important to determine the physical mechanism underlying diffusion and precisely characterize its nature and parameters. Often, this task is strongly impacted by data consisting of trajectories with short length (either due to brief recordings or previous trajectory segmentation) and limited localization precision. In this paper, we propose a machine learning method based on a random forest architecture, which is able to associate single trajectories to the underlying diffusion mechanism with high accuracy. In addition, the algorithm is able to determine the anomalous exponent with a small error, thus inherently provi…
Cosmological radio emission induced by WIMP Dark Matter
2011
We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJa…