Search results for " diffusion"

showing 10 items of 521 documents

Can histographic analysis of apparent diffusion coefficient help discriminate between benign and malignant nodes in head and neck squamous cell carci…

2011

Objective: To investigate histographic analysis of apparent diffusion coefficient (ADC) measurements as discriminators of benign from malignant lymph nodes in patients with head and neck (H&N) squamous cell carcinoma (SCC) Materials and Methods: Seventeen patients with H&N SCC staged for nodal disease using anatomical MRI, contrast enhanced CT and ultrasound ± fine needle aspiration gave informed consent for additional MR diffusion weighted imaging (DWI). Axial DWI was performed by short tau inversion recovery (STIR) echo planar imaging and trace weighted images obtained b 0, 50, 100, 300, 600 and 1000. Image analysis was conducted using Jim 5.0. Nodal disease and contralateral benign nodal…

Squamocellular carcinoma MRI Diffusion Weighted Imaging Hystographic analysis
researchProduct

Technology standard diffusion and negative network externalities: a lesson from the third Browser War

2009

This paper presents a new model for technology standard diffusion that highlights the importance of negative network externalities in some fields of technology product such as web browsers. Again, as often happened in this research field, motivation and suggestion for such a research has been acquired from the evolution of the web browser war. So, in the paper, the main literature concerning standard diffusion has been reviewed in conjunction with web browser evolution, and the necessity of a new development of technology standard diffusion models is highlighted and supported by empirical evidences.

Standards diffusion Lock-in Web BrowserSettore ING-IND/35 - Ingegneria Economico-Gestionale
researchProduct

Jump-diffusion models of German stock returns

1991

This paper discusses the statistical properties of jump-diffusion processes and reports on parameter estimates for the DAX stock index and 48 German stocks with traded options. It is found that a Poisson-type jump-diffusion process can explain the high levels of kurtosis and skewness of observed return distributions of German stocks. Furthermore, we demonstrate that the return dynamics of the DAX include a statistically significant jump component except for a few sample subperiods. This finding is seen to be inconsistent with asset pricing models assuming that the jump component of the stock's return is unsystematic and diversifiable in the market portfolio.

Statistics and ProbabilityActuarial scienceMarket portfolioJump diffusionStock market indexComputer Science::Computational Engineering Finance and ScienceSkewnessEconomicsKurtosisJumpEconometricsCapital asset pricing modelStatistics Probability and UncertaintyStock (geology)Statistical Papers
researchProduct

On fractional diffusion and continuous time random walks

2003

Abstract A continuous time random walk model is presented with long-tailed waiting time density that approaches a Gaussian distribution in the continuum limit. This example shows that continuous time random walks with long time tails and diffusion equations with a fractional time derivative are in general not asymptotically equivalent.

Statistics and ProbabilityAnomalous diffusionGaussianMathematical analysisCondensed Matter PhysicsRandom walkFractional calculussymbols.namesakeDistribution (mathematics)Time derivativesymbolsLimit (mathematics)Continuous-time random walkMathematicsPhysica A: Statistical Mechanics and its Applications
researchProduct

Ergodicity for a stochastic Hodgkin–Huxley model driven by Ornstein–Uhlenbeck type input

2013

We consider a model describing a neuron and the input it receives from its dendritic tree when this input is a random perturbation of a periodic deterministic signal, driven by an Ornstein-Uhlenbeck process. The neuron itself is modeled by a variant of the classical Hodgkin-Huxley model. Using the existence of an accessible point where the weak Hoermander condition holds and the fact that the coefficients of the system are analytic, we show that the system is non-degenerate. The existence of a Lyapunov function allows to deduce the existence of (at most a finite number of) extremal invariant measures for the process. As a consequence, the complexity of the system is drastically reduced in c…

Statistics and ProbabilityDegenerate diffusion processesWeak Hörmander conditionType (model theory)01 natural sciencesPeriodic ergodicity010104 statistics & probability60H0760J25FOS: Mathematics0101 mathematicsComputingMilieux_MISCELLANEOUSMathematical physicsMathematics60J60Quantitative Biology::Neurons and CognitionProbability (math.PR)010102 general mathematicsErgodicityOrnstein–Uhlenbeck processHodgkin–Huxley model[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Hodgkin–Huxley model60J60 60J25 60H07Statistics Probability and UncertaintyTime inhomogeneous diffusion processesMathematics - Probability
researchProduct

Graphical representation of some duality relations in stochastic population models

2007

We derive a unified stochastic picture for the duality of a resampling-selection model with a branching-coalescing particle process (cf. http://www.ams.org/mathscinet-getitem?mr=MR2123250) and for the self-duality of Feller's branching diffusion with logistic growth (cf. math/0509612). The two dual processes are approximated by particle processes which are forward and backward processes in a graphical representation. We identify duality relations between the basic building blocks of the particle processes which lead to the two dualities mentioned above.

Statistics and ProbabilityDiscrete mathematicsDualityProcess (engineering)Feller's branching diffusionProbability (math.PR)Duality (optimization)Dual (category theory)Algebragraphical representationbranching-coalescing particle processstochastic population dynamicsPopulation model60K35resampling-selection modelMathematikFOS: MathematicsStatistics Probability and UncertaintyLogistic functionDiffusion (business)Representation (mathematics)Mathematics - ProbabilityMathematics
researchProduct

Rare events and scaling properties in field-induced anomalous dynamics

2012

We show that, in a broad class of continuous time random walks (CTRW), a small external field can turn diffusion from standard into anomalous. We illustrate our findings in a CTRW with trapping, a prototype of subdiffusion in disordered and glassy materials, and in the L\'evy walk process, which describes superdiffusion within inhomogeneous media. For both models, in the presence of an external field, rare events induce a singular behavior in the originally Gaussian displacements distribution, giving rise to power-law tails. Remarkably, in the subdiffusive CTRW, the combined effect of highly fluctuating waiting times and of a drift yields a non-Gaussian distribution characterized by long sp…

Statistics and ProbabilityField (physics)GaussianFOS: Physical sciencesQuantitative Biology::Cell Behaviorsymbols.namesaketransport processes/heat transfer (theory). diffusionRare eventsstochastic particle dynamics (theory)Statistical physicsDiffusion (business)ScalingPhysicsdiffusiondriven diffusive systems (theory)Statistical and Nonlinear PhysicsDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksRandom walkDistribution (mathematics)Lévy flighttransport processes/heat transfer (theory)symbolsdiffusion; stochastic particle dynamics (theory); driven diffusive systems (theory); transport processes/heat transfer (theory)Statistics Probability and UncertaintyStatistical and Nonlinear PhysicJournal of Statistical Mechanics: Theory and Experiment
researchProduct

Phase transformation kinetics in d-dimensional grains-containing systems: diffusion-type model

1998

Abstract An analytical approach to the phase transformation in d-dimensional grains-containing complex systems is offered. It is based on considering the mechanism of surface material exchange among neighbouring grains as the so-called state-dependent diffusion process, where the diffusion function is related to the magnitude of the grain boundary. The approach proposed deals with the kinetics of that ensemble under circumstances of a volume increase of the new phase or microstructure. Probabilistic characteristics of the process are derived and analyzed. A comparison with 2D modelling of similar kind is presented for the 3D case, and some possible practical realizations of the situation un…

Statistics and ProbabilityGrain growthMaterials scienceTransformation (function)Diffusion processPhase (matter)Complex systemThermodynamicsGrain boundary diffusion coefficientGrain boundaryDiffusion (business)Condensed Matter PhysicsPhysica A: Statistical Mechanics and its Applications
researchProduct

Stochastic model for the epitaxial growth of two-dimensional islands in the submonolayer regime

2016

The diffusion-based growth of islands composed of clusters of metal atoms on a substrate is considered in the aggregation regime. A stochastic approach is proposed to describe the dynamics of island growth based on a Langevin equation with multiplicative noise. The distribution of island sizes, obtained as a solution of the corresponding Fokker-Planck equation, is derived. The time-dependence of island growth on its fractal dimension is analysed. The effect of mobility of the small islands on the growth of large islands is considered. Numerical simulations are in a good agreement with theoretical results.

Statistics and ProbabilityMaterials scienceCondensed matter physicsStochastic modellingStatistical and Nonlinear Physics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesdiffusion-limited aggregation (theory)0103 physical sciencesstochastic processes (theory) diffusionStatistics Probability and Uncertaintydendritic growth (theory)010306 general physics0210 nano-technologydendritic growth (theory); diffusion-limited aggregation (theory); stochastic processes (theory) diffusion; Statistics and Probability; Statistical and Nonlinear Physics; Statistics Probability and UncertaintyStatistical and Nonlinear PhysicJournal of Statistical Mechanics: Theory and Experiment
researchProduct

Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small-noise limit

2011

In the context of self-stabilizing processes, that is processes attracted by their own law, living in a potential landscape, we investigate different properties of the invariant measures. The interaction between the process and its law leads to nonlinear stochastic differential equations. In [S. Herrmann and J. Tugaut. Electron. J. Probab. 15 (2010) 2087–2116], the authors proved that, for linear interaction and under suitable conditions, there exists a unique symmetric limit measure associated to the set of invariant measures in the small-noise limit. The aim of this study is essentially to point out that this statement leads to the existence, as the noise intensity is small, of one unique…

Statistics and ProbabilityMcKean-Vlasov equationLaplace transformdouble-well potential010102 general mathematicsMathematical analysisFixed-point theoremfixed point theoremDouble-well potentialInvariant (physics)01 natural sciencesself-interacting diffusionuniqueness problem[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010104 statistics & probabilityRate of convergenceLaplace's methodUniquenessInvariant measureperturbed dynamical systemstationary measures0101 mathematicsLaplace's methodprimary 60G10; secondary: 60J60 60H10 41A60Mathematics
researchProduct