Search results for " dimensionality reduction"

showing 7 items of 17 documents

Applying differential geometric LARS algorithm to ultra-high dimensional feature space

2009

Variable selection is fundamental in high-dimensional statistical modeling. Many techniques to select relevant variables in generalized linear models are based on a penalized likelihood approach. In a recent paper, Fan and Lv (2008) proposed a sure independent screening (SIS) method to select relevant variables in a linear regression model defined on a ultrahigh dimensional feature space. Aim of this paper is to define a generalization of the SIS method for generalized linear models based on a differential geometric approach.

LARS dimensionality reduction variable selection differential geometrySettore SECS-S/01 - Statistica
researchProduct

Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a Hybrid Retrieval Workflow Using Sentinel-2 Imagery

2022

Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learni…

Leaf Area IndexVegetation Water and Chlorophyll ContentActive LearningContenido de Agua y Clorofila de la VegetaciónDimencionality ReductionÍndice de Superficie FoliarAprendizaje ActivoReducción de DimensionalidadKrigingImágenesHybrid Retrieval WorkflowFlujo de Trabajo de Recuperación HíbridoGeneral Earth and Planetary SciencesImageryleaf area index; vegetation water and chlorophyll content; Gaussian processes regression; hybrid retrieval workflow; dimensionality reduction; active learningKrigeageRemote Sensing
researchProduct

Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization

2016

Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corres…

Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciencesHyperspectral imagingComputer Vision and Pattern Recognition (cs.CV)0211 other engineering and technologiesNormalization (image processing)Computer Science - Computer Vision and Pattern Recognition02 engineering and technology3107 Atomic and Molecular Physics and Optics01 natural sciencesLaboratory of Geo-information Science and Remote SensingComputer vision910 Geography & travelMathematicsDomain adaptationContextual image classificationImage and Video Processing (eess.IV)1903 Computers in Earth SciencesPE&RCClassificationAtomic and Molecular Physics and OpticsComputer Science ApplicationsKernel method10122 Institute of GeographyKernel (image processing)Feature extractionFeature extractionVery high resolutionGraph-based methods1706 Computer Science ApplicationsFOS: Electrical engineering electronic engineering information engineeringLaboratorium voor Geo-informatiekunde en Remote SensingComputers in Earth SciencesElectrical Engineering and Systems Science - Signal ProcessingEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingManifold alignmentbusiness.industryNonlinear dimensionality reductionHistogram matchingKernel methodsPattern recognitionElectrical Engineering and Systems Science - Image and Video ProcessingManifold learningArtificial intelligence2201 Engineering (miscellaneous)businessISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit

2015

Abstract The development of systems for automatically detecting decay in citrus fruit during quality control is still a challenge for the citrus industry. The feasibility of reflectance spectroscopy in the visible and near infrared (NIR) regions was evaluated for the automatic detection of the early symptoms of decay caused by Penicillium digitatum fungus in citrus fruit. Reflectance spectra of sound and decaying surface parts of mandarins cv. ‘Clemenvilla’ were acquired in two different spectral regions, from 650 nm to 1050 nm (visible–NIR) and from 1000 nm to 1700 nm (NIR), pointing to significant differences in spectra between sound and decaying skin for both spectral ranges. Three diffe…

business.industryChemistryDimensionality reductionFeature vectorNear-infrared spectroscopyNonlinear dimensionality reductionLinear discriminant analysisSammon mappingOpticsPrincipal component analysisbusinessSpectroscopyBiological systemFood Science
researchProduct

Nonlinear data description with Principal Polynomial Analysis

2012

Principal Component Analysis (PCA) has been widely used for manifold description and dimensionality reduction. Performance of PCA is however hampered when data exhibits nonlinear feature relations. In this work, we propose a new framework for manifold learning based on the use of a sequence of Principal Polynomials that capture the eventually nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) is shown to generalize PCA. Unlike recently proposed nonlinear methods (e.g. spectral/kernel methods and projection pursuit techniques, neural networks), PPA features are easily interpretable and the method leads to a fully invertible transform, which is a desirable property…

business.industryCodingDimensionality reductionNonlinear dimensionality reductionDiffusion mapSparse PCAComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONElastic mapPattern recognitionManifold LearningClassificationKernel principal component analysisComputingMethodologies_PATTERNRECOGNITIONPrincipal component analysisPrincipal Polynomial AnalysisArtificial intelligencePrincipal geodesic analysisbusinessDimensionality ReductionMathematics
researchProduct

Semisupervised kernel orthonormalized partial least squares

2012

This paper presents a semisupervised kernel orthonormalized partial least squares (SS-KOPLS) algorithm for non-linear feature extraction. The proposed method finds projections that minimize the least squares regression error in Hilbert spaces and incorporates the wealth of unlabeled information to deal with small size labeled datasets. The method relies on combining a standard RBF kernel using labeled information, and a generative kernel learned by clustering all available data. The positive definiteness of the kernels is proven, and the structure and information content of the derived kernels is studied. The effectiveness of the proposed method is successfully illustrated in standard UCI d…

business.industryFeature extractionNonlinear dimensionality reductionPattern recognitionComputingMethodologies_PATTERNRECOGNITIONKernel methodVariable kernel density estimationKernel (statistics)Radial basis function kernelPartial least squares regressionArtificial intelligenceCluster analysisbusinessMathematics2012 IEEE International Workshop on Machine Learning for Signal Processing
researchProduct

A visualization technique for accessing solution pool in interactive methods of multiobjective optimization

2015

<pre>Interactive methods of <span>multiobjective</span> optimization repetitively derive <span>Pareto</span> optimal solutions based on decision maker's preference information and present the obtained solutions for his/her consideration. Some interactive methods save the obtained solutions into a solution pool and, at each iteration, allow the decision maker considering any of solutions obtained earlier. This feature contributes to the flexibility of exploring the <span>Pareto</span> optimal set and learning about the optimization problem. However, in the case of many objective functions, the accumulation of derived solutions makes accessing the sol…

multidimensional scalingMathematical optimizationOptimization problemComputer Networks and CommunicationsComputer sciencevisualisointiPareto front visualizationcomputer.software_genreMulti-objective optimizationSet (abstract data type)menetelmätMultidimensional scalingMultiobjective optimizationdimensionality reductionFlexibility (engineering)pareto-tehokkuusDimensionality reductionMultiobjective optimization ; interactive methods ; Pareto front visualization ; dimensionality reduction ; multidimensional scalinginteractive methodsNIMBUSmonitavoiteoptimointiComputer Science ApplicationsVisualizationComputational Theory and MathematicsFeature (computer vision)interaktiivisuusData miningcomputer
researchProduct