Search results for " dynamical systems"

showing 10 items of 165 documents

Spectral rigidity and invariant distributions on Anosov surfaces

2014

This article considers inverse problems on closed Riemannian surfaces whose geodesic flow is Anosov. We prove spectral rigidity for any Anosov surface and injectivity of the geodesic ray transform on solenoidal 2-tensors. We also establish surjectivity results for the adjoint of the geodesic ray transform on solenoidal tensors. The surjectivity results are of independent interest and imply the existence of many geometric invariant distributions on the unit sphere bundle. In particular, we show that on any Anosov surface $(M,g)$, given a smooth function $f$ on $M$ there is a distribution in the Sobolev space $H^{-1}(SM)$ that is invariant under the geodesic flow and whose projection to $M$ i…

Unit sphereMathematics - Differential GeometryPure mathematicsAlgebra and Number TheorySolenoidal vector fieldGeodesicisospectral manifoldsDynamical Systems (math.DS)Inverse problemSobolev spaceRigidity (electromagnetism)Mathematics - Analysis of PDEsmath.DGDifferential Geometry (math.DG)conjugate-pointsBundleGeodesic flowFOS: MathematicsGeometry and TopologyMathematics - Dynamical SystemsAnalysismath.APmath.DSMathematicsAnalysis of PDEs (math.AP)
researchProduct

A posteriori error estimates for Webster's equation in wave propagation

2015

We consider a generalised Webster’s equation for describing wave propagation in curved tubular structures such as variable diameter acoustic wave guides. Webster’s equation in generalised form has been rigorously derived in a previous article starting from the wave equation, and it approximates cross-sectional averages of the propagating wave. Here, the approximation error is estimated by an a posteriori technique. peerReviewed

Wave propagationWave propagationApplied MathematicsMathematical analysista111Tubular domainDynamical Systems (math.DS)Acoustic waveWave equationPrimary 37L05. Secondary 35L05 35L20 47N70 93C20A posteriori error analysisMathematics - Analysis of PDEsApproximation errorFOS: MathematicsCalculusA priori and a posterioriWebster's modelMathematics - Dynamical SystemsAnalysisAnalysis of PDEs (math.AP)MathematicsVariable (mathematics)
researchProduct

Building Anosov flows on $3$–manifolds

2014

We prove a result allowing to build (transitive or non-transitive) Anosov flows on 3-manifolds by gluing together filtrating neighborhoods of hyperbolic sets. We give several applications; for example: 1. we build a 3-manifold supporting both of a transitive Anosov vector field and a non-transitive Anosov vector field; 2. for any n, we build a 3-manifold M supporting at least n pairwise different Anosov vector fields; 3. we build transitive attractors with prescribed entrance foliation; in particular, we construct some incoherent transitive attractors; 4. we build a transitive Anosov vector field admitting infinitely many pairwise non-isotopic trans- verse tori.

[ MATH ] Mathematics [math]Pure mathematicsAnosov flowMathematics::Dynamical Systems3–manifolds[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)$3$–manifolds01 natural sciencesFoliationsSet (abstract data type)MSC: Primary: 37D20 Secondary: 57M9957M99Diffeomorphisms0103 physical sciencesAttractorFOS: Mathematics0101 mathematics[MATH]Mathematics [math]Mathematics - Dynamical SystemsManifoldsMathematics::Symplectic Geometry3-manifold37D20 57MMathematicsTransitive relation37D20010308 nuclear & particles physics010102 general mathematicsTorusMathematics::Geometric TopologyFlow (mathematics)Anosov flowsFoliation (geology)Vector fieldhyperbolic plugsGeometry and Topologyhyperbolic basic set3-manifold
researchProduct

Bifurcations in the elementary Desboves family

2017

International audience; We give an example of a family of endomorphisms of $\mathbb{P}^2(\mathbb{C})$ whose Julia set depends continuously on the parameter and whose bifurcation locus has non-empty interior.

[ MATH ] Mathematics [math]Pure mathematicsEndomorphismMathematics - Complex VariablesApplied MathematicsGeneral Mathematics010102 general mathematicsDynamical Systems (math.DS)MSC: 32H50 37F4516. Peace & justice01 natural sciencesJulia setDynamicsRational mapsBifurcation locus0103 physical sciencesFOS: Mathematics32H50 37F45 37F50010307 mathematical physics0101 mathematics[MATH]Mathematics [math]Complex Variables (math.CV)Mathematics - Dynamical SystemsMathematics
researchProduct

Rotation Forms and Local Hamiltonian Monodromy

2017

International audience; The monodromy of torus bundles associated with completely integrable systems can be computed using geometric techniques (constructing homology cycles) or analytic arguments (computing discontinuities of abelian integrals). In this article, we give a general approach to the computation of monodromy that resembles the analytical one, reducing the problem to the computation of residues of polar 1-forms. We apply our technique to three celebrated examples of systems with monodromy (the champagne bottle, the spherical pendulum, the hydrogen atom) and to the case of non-degenerate focus-focus singularities, re-obtaining the classical results. An advantage of this approach …

[ MATH ] Mathematics [math]Pure mathematicsIntegrable systemFOCUS-FOCUS SINGULARITIESmath-phFOS: Physical sciencesDynamical Systems (math.DS)Homology (mathematics)01 natural sciencesSingularityMathematics::Algebraic Geometrymath.MPSYSTEMS0103 physical sciencesFOS: Mathematics0101 mathematicsAbelian groupMathematics - Dynamical Systems[MATH]Mathematics [math]010306 general physicsMathematics::Symplectic GeometryMathematical PhysicsMathematicsNEIGHBORHOODS[PHYS]Physics [physics][ PHYS ] Physics [physics]010102 general mathematicsSpherical pendulumStatistical and Nonlinear PhysicsTorusMathematical Physics (math-ph)37JxxMonodromyStatistical and Nonlinear Physics; Mathematical PhysicsGravitational singularityPOINTSmath.DS
researchProduct

Unfolding of saddle-nodes and their Dulac time

2016

Altres ajuts: UNAB10-4E-378, co-funded by ERDF "A way to build Europe" and by the French ANR-11-BS01-0009 STAAVF. In this paper we study unfoldings of saddle-nodes and their Dulac time. By unfolding a saddle-node, saddles and nodes appear. In the first result (Theorem A) we give a uniform asymptotic expansion of the trajectories arriving at the node. Uniformity is with respect to all parameters including the unfolding parameter bringing the node to a saddle-node and a parameter belonging to a space of functions. In the second part, we apply this first result for proving a regularity result (Theorem B) on the Dulac time (time of Dulac map) of an unfolding of a saddle-node. This result is a b…

[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Block (permutation group theory)Dynamical Systems (math.DS)Space (mathematics)01 natural sciencesCombinatoricsQuadratic equationFOS: MathematicsMathematics - Dynamical Systems0101 mathematicsBifurcationSaddleMathematicsPeriod functionApplied MathematicsUnfolding of a saddle-node010102 general mathematics16. Peace & justice010101 applied mathematicsMSC: 34C07Asymptotic expansions34C07Node (circuits)Asymptotic expansionAnalysis
researchProduct

A Franks' lemma that preserves invariant manifolds

2009

A well-known lemma by John Franks asserts that one obtains any perturbation of the derivative of a diffeomorphism along a periodic orbit by a $C^1$-perturbation of the whole diffeomorphism on a small neighbourhood of the orbit. However, one does not control where the invariant manifolds of the orbit are, after perturbation. We show that if the perturbated derivative is obtained by an isotopy along which some strong stable/unstable manifolds of some dimensions exist, then the Franks perturbation can be done preserving the corresponding stable/unstable semi-local manifolds. This is a general perturbative tool in $C^1$-dynamics that has many consequences. We give simple examples of such conseq…

[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]FOS: Mathematics37C25 37C29 37C20 37D10[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Mathematics - Dynamical Systems
researchProduct

Ping-pong configurations and circular orders on free groups

2017

We discuss actions of free groups on the circle with "ping-pong" dynamics; these are dynamics determined by a finite amount of combinatorial data, analogous to Schottky domains or Markov partitions. Using this, we show that the free group $F_n$ admits an isolated circular order if and only if n is even, in stark contrast with the case for linear orders. This answers a question from (Mann, Rivas, 2016). Inspired by work of Alvarez, Barrientos, Filimonov, Kleptsyn, Malicet, Menino and Triestino, we also exhibit examples of "exotic" isolated points in the space of all circular orders on $F_2$. Analogous results are obtained for linear orders on the groups $F_n \times \mathbb{Z}$.

[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]MSC2010: Primary 20F60 57M60. Secondary 20E05 37C85 37E05 37E10 57M60.Extension (predicate logic)Group Theory (math.GR)Dynamical Systems (math.DS)Space (mathematics)20F60 57M60[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsFree groupsOne-dimensional dynamicsFree groupPing pongFOS: MathematicsDiscrete Mathematics and CombinatoricsOrder (group theory)Geometry and TopologyMathematics - Dynamical SystemsMathematics - Group TheoryMathematicsOrders on groups
researchProduct

Fractal Weyl law for open quantum chaotic maps

2014

We study the semiclassical quantization of Poincar\'e maps arising in scattering problems with fractal hyperbolic trapped sets. The main application is the proof of a fractal Weyl upper bound for the number of resonances/scattering poles in small domains near the real axis. This result encompasses the case of several convex (hard) obstacles satisfying a no-eclipse condition.

[ NLIN.NLIN-CD ] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesSemiclassical physicsDynamical Systems (math.DS)35B34 37D20 81Q50 81U05Upper and lower boundsMSC: 35B34 37D20 81Q50 81U05Fractal Weyl lawQuantization (physics)Mathematics - Analysis of PDEs[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP]Mathematics (miscellaneous)Fractal[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics - Dynamical SystemsQuantumMathematical physicsMathematicsScattering[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Nonlinear Sciences - Chaotic DynamicsWeyl lawResonancesQuantum chaotic scattering[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Chaotic Dynamics (nlin.CD)Statistics Probability and UncertaintyOpen quantum mapComplex planeAnalysis of PDEs (math.AP)Annals of Mathematics
researchProduct

Experimental and numerical enhancement of Vibrational Resonance in a neural circuit

2012

International audience; A neural circuit exactly ruled by the FitzHugh-Nagumo equations is excited by a biharmonic signal of frequencies f and F with respective amplitudes A and B. The magnitude spectrum of the circuit response is estimated at the low frequency driving f and presents a resonant behaviour versus the amplitude B of the high frequency. For the first time, it is shown experimentally that this Vibrational Resonance effect is much more pronounced when the two frequencies are multiple. This novel enhancement is also confirmed by numerical predictions. Applications of this nonlinear effect to the detection of weak stimuli are finally discussed.

[ PHYS.COND.CM-DS-NN ] Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]02 engineering and technologyLow frequency01 natural sciencesSignalVibrational ResonanceNuclear magnetic resonance[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]0103 physical sciences0202 electrical engineering electronic engineering information engineeringVibrational resonance[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]Electrical and Electronic Engineering010306 general physicsMathematicsQuantitative Biology::Neurons and Cognition020208 electrical & electronic engineering[SPI.TRON]Engineering Sciences [physics]/ElectronicsComputational physics[ SPI.TRON ] Engineering Sciences [physics]/ElectronicsNonlinear systemAmplitudeExcited stateNonlinear resonanceBiharmonic equationNonlinear dynamical systemsFitzHugh-Nagumo
researchProduct