Search results for " dynamical systems"
showing 10 items of 165 documents
Lock-in range of PLL-based circuits with proportionally-integrating filter and sinusoidal phase detector characteristic
2016
In the present work PLL-based circuits with sinusoidal phase detector characteristic and active proportionally-integrating (PI) filter are considered. The notion of lock-in range -- an important characteristic of PLL-based circuits, which corresponds to the synchronization without cycle slipping, is studied. For the lock-in range a rigorous mathematical definition is discussed. Numerical and analytical estimates for the lock-in range are obtained.
Algebras of frequently hypercyclic vectors
2019
We show that the multiples of the backward shift operator on the spaces $\ell_{p}$, $1\leq p<\infty$, or $c_{0}$, when endowed with coordinatewise multiplication, do not possess frequently hypercyclic algebras. More generally, we characterize the existence of algebras of $\mathcal{A}$-hypercyclic vectors for these operators. We also show that the differentiation operator on the space of entire functions, when endowed with the Hadamard product, does not possess frequently hypercyclic algebras. On the other hand, we show that for any frequently hypercyclic operator $T$ on any Banach space, $FHC(T)$ is algebrable for a suitable product, and in some cases it is even strongly algebrable.
Attractors for non-autonomous retarded lattice dynamical systems
2015
AbstractIn this paperwe study a non-autonomous lattice dynamical system with delay. Under rather general growth and dissipative conditions on the nonlinear term,we define a non-autonomous dynamical system and prove the existence of a pullback attractor for such system as well. Both multivalued and single-valued cases are considered.
Small $C^1$ actions of semidirect products on compact manifolds
2020
Let $T$ be a compact fibered $3$--manifold, presented as a mapping torus of a compact, orientable surface $S$ with monodromy $\psi$, and let $M$ be a compact Riemannian manifold. Our main result is that if the induced action $\psi^*$ on $H^1(S,\mathbb{R})$ has no eigenvalues on the unit circle, then there exists a neighborhood $\mathcal U$ of the trivial action in the space of $C^1$ actions of $\pi_1(T)$ on $M$ such that any action in $\mathcal{U}$ is abelian. We will prove that the same result holds in the generality of an infinite cyclic extension of an arbitrary finitely generated group $H$, provided that the conjugation action of the cyclic group on $H^1(H,\mathbb{R})\neq 0$ has no eige…
Weakly controlled Moran constructions and iterated functions systems in metric spaces
2011
We study the Hausdorff measures of limit sets of weakly controlled Moran constructions in metric spaces. The separation of the construction pieces is closely related to the Hausdorff measure of the corresponding limit set. In particular, we investigate different separation conditions for semiconformal iterated function systems. Our work generalizes well known results on self-similar sets in metric spaces as well as results on controlled Moran constructions in Euclidean spaces.
Convergent Analytic Solutions for Homoclinic Orbits in Reversible and Non-reversible Systems
2013
In this paper, convergent, multi-infinite, series solutions are derived for the homoclinic orbits of a canonical fourth-order ODE system, in both reversible and non-reversible cases. This ODE includes traveling-wave reductions of many important nonlinear PDEs or PDE systems, for which these analytical solutions would correspond to regular or localized pulses of the PDE. As such, the homoclinic solutions derived here are clearly topical, and they are shown to match closely to earlier results obtained by homoclinic numerical shooting. In addition, the results for the non-reversible case go beyond those that have been typically considered in analyses conducted within bifurcation-theoretic sett…
Robust control of uncertain multi-inventory systems via linear matrix inequality
2008
We consider a continuous time linear multi inventory system with unknown demands bounded within ellipsoids and controls bounded within ellipsoids or polytopes. We address the problem of "-stabilizing the inventory since this implies some reduction of the inventory costs. The main results are certain conditions under which "-stabilizability is possible through a saturated linear state feedback control. All the results are based on a Linear Matrix Inequalities (LMIs) approach and on some recent techniques for the modeling and analysis of polytopic systems with saturations.
Estimation of Lyapunov dimension for the Chen and Lu systems
2015
Nowadays various estimates of Lyapunov dimension of Lorenz-like systems attractors are actively developed. Within the frame of this study the question arises whether it is possible to obtain the corresponding estimates of dimension for the Chen and Lu systems using the reduction of them to the generalized Lorenz system. In the work (Chen and Yang, 2013) Leonov's method was applied for the estimation of Lyapunov dimension, and as a consequence the Lyapunov dimension of attractors of the Chen and Lu systems with the classical parameters was estimated. In the present work an inaccuracy in (Chen and Yang, 2013) is corrected and it is shown that the revised domain of parameters, where the estima…
Persistence in complex systems
2022
Persistence is an important characteristic of many complex systems in nature, related to how long the system remains at a certain state before changing to a different one. The study of complex systems' persistence involves different definitions and uses different techniques, depending on whether short-term or long-term persistence is considered. In this paper we discuss the most important definitions, concepts, methods, literature and latest results on persistence in complex systems. Firstly, the most used definitions of persistence in short-term and long-term cases are presented. The most relevant methods to characterize persistence are then discussed in both cases. A complete literature r…
Host–virus evolutionary dynamics with specialist and generalist infection strategies: Bifurcations, bistability, and chaos
2019
In this work, we have investigated the evolutionary dynamics of a generalist pathogen, e.g., a virus population, that evolves toward specialization in an environment with multiple host types. We have particularly explored under which conditions generalist viral strains may rise in frequency and coexist with specialist strains or even dominate the population. By means of a nonlinear mathematical model and bifurcation analysis, we have determined the theoretical conditions for stability of nine identified equilibria and provided biological interpretation in terms of the infection rates for the viral specialist and generalist strains. By means of a stability diagram, we identified stable fixed…