Search results for " dynamical systems"

showing 10 items of 165 documents

Lock-in range of PLL-based circuits with proportionally-integrating filter and sinusoidal phase detector characteristic

2016

In the present work PLL-based circuits with sinusoidal phase detector characteristic and active proportionally-integrating (PI) filter are considered. The notion of lock-in range -- an important characteristic of PLL-based circuits, which corresponds to the synchronization without cycle slipping, is studied. For the lock-in range a rigorous mathematical definition is discussed. Numerical and analytical estimates for the lock-in range are obtained.

FOS: MathematicsHardware_INTEGRATEDCIRCUITSDynamical Systems (math.DS)Mathematics - Dynamical Systems
researchProduct

Algebras of frequently hypercyclic vectors

2019

We show that the multiples of the backward shift operator on the spaces $\ell_{p}$, $1\leq p<\infty$, or $c_{0}$, when endowed with coordinatewise multiplication, do not possess frequently hypercyclic algebras. More generally, we characterize the existence of algebras of $\mathcal{A}$-hypercyclic vectors for these operators. We also show that the differentiation operator on the space of entire functions, when endowed with the Hadamard product, does not possess frequently hypercyclic algebras. On the other hand, we show that for any frequently hypercyclic operator $T$ on any Banach space, $FHC(T)$ is algebrable for a suitable product, and in some cases it is even strongly algebrable.

Mathematics::Functional AnalysisPure mathematicsGeneral MathematicsEntire function010102 general mathematicsBanach spaceDynamical Systems (math.DS)Shift operatorSpace (mathematics)01 natural sciences010101 applied mathematicsStatistics::Machine LearningOperator (computer programming)Product (mathematics)Banach algebraFOS: MathematicsHadamard productMathematics - Dynamical Systems0101 mathematics47A16MathematicsMathematische Nachrichten
researchProduct

Attractors for non-autonomous retarded lattice dynamical systems

2015

AbstractIn this paperwe study a non-autonomous lattice dynamical system with delay. Under rather general growth and dissipative conditions on the nonlinear term,we define a non-autonomous dynamical system and prove the existence of a pullback attractor for such system as well. Both multivalued and single-valued cases are considered.

Statistics and ProbabilityDifferential equations with delayDynamical systems theoryNon-autonomous systemslattice dynamical systemsPullback attractorHamiltonian systemLinear dynamical systemProjected dynamical systemAttractorQA1-939pullback attractorMathematicsNumerical AnalysisApplied MathematicsMathematical analysisdifferential equations with delaynon-autonomous systemsClassical mechanicsLattice dynamical systemsPullback attractorset-valued dynamical systemsSet-valued dynamical systemsLimit setRandom dynamical systemMathematicsAnalysis
researchProduct

Small $C^1$ actions of semidirect products on compact manifolds

2020

Let $T$ be a compact fibered $3$--manifold, presented as a mapping torus of a compact, orientable surface $S$ with monodromy $\psi$, and let $M$ be a compact Riemannian manifold. Our main result is that if the induced action $\psi^*$ on $H^1(S,\mathbb{R})$ has no eigenvalues on the unit circle, then there exists a neighborhood $\mathcal U$ of the trivial action in the space of $C^1$ actions of $\pi_1(T)$ on $M$ such that any action in $\mathcal{U}$ is abelian. We will prove that the same result holds in the generality of an infinite cyclic extension of an arbitrary finitely generated group $H$, provided that the conjugation action of the cyclic group on $H^1(H,\mathbb{R})\neq 0$ has no eige…

Pure mathematics37D30[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Cyclic groupDynamical Systems (math.DS)Group Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]57M60$C^1$–close to the identityMathematics - Geometric TopologyPrimary 37C85. Secondary 20E22 57K32[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesMapping torusFOS: Mathematics57R3520E220101 mathematicsAbelian groupMathematics - Dynamical SystemsMathematics37C85010102 general mathematicsGeometric Topology (math.GT)groups acting on manifoldsRiemannian manifoldSurface (topology)57M50fibered $3$–manifoldhyperbolic dynamicsUnit circleMonodromy010307 mathematical physicsGeometry and TopologyFinitely generated groupMathematics - Group Theory
researchProduct

Weakly controlled Moran constructions and iterated functions systems in metric spaces

2011

We study the Hausdorff measures of limit sets of weakly controlled Moran constructions in metric spaces. The separation of the construction pieces is closely related to the Hausdorff measure of the corresponding limit set. In particular, we investigate different separation conditions for semiconformal iterated function systems. Our work generalizes well known results on self-similar sets in metric spaces as well as results on controlled Moran constructions in Euclidean spaces.

Pure mathematicsClosed set28A8028A80 28A78 (Primary); 37C45 (Secondary)General MathematicsHausdorff dimensionDynamical Systems (math.DS)Hausdorff measureCombinatoricsopen set conditionsemikonforminen iteroitu funktiojärjestelmäsemiconformal iterated function systemFOS: Mathematics37C45 (Secondary)Hausdorff measureHausdorff-ulottuvuusMathematics - Dynamical SystemsHausdorffin mittaMathematicsball condition37C45avoimen joukon ehtoMoran-konstruktiofinite clustering propertyInjective metric spaceHausdorff spaceMoran constructionäärellinen pakkautuminenConvex metric space28A80 28A78 (Primary)Metric spaceHausdorff distance28A78palloehtoNormal space
researchProduct

Convergent Analytic Solutions for Homoclinic Orbits in Reversible and Non-reversible Systems

2013

In this paper, convergent, multi-infinite, series solutions are derived for the homoclinic orbits of a canonical fourth-order ODE system, in both reversible and non-reversible cases. This ODE includes traveling-wave reductions of many important nonlinear PDEs or PDE systems, for which these analytical solutions would correspond to regular or localized pulses of the PDE. As such, the homoclinic solutions derived here are clearly topical, and they are shown to match closely to earlier results obtained by homoclinic numerical shooting. In addition, the results for the non-reversible case go beyond those that have been typically considered in analyses conducted within bifurcation-theoretic sett…

Homoclinic orbitSeries (mathematics)Applied MathematicsMechanical EngineeringOdeAerospace EngineeringFOS: Physical sciencesSolitary waveOcean EngineeringExtension (predicate logic)Dynamical Systems (math.DS)Mathematical Physics (math-ph)Bifurcation analysisControl and Systems EngineeringFOS: MathematicsApplied mathematicsPeriodic orbitsReversible and nonreversible systemHomoclinic orbitMathematics - Dynamical SystemsElectrical and Electronic EngineeringSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematics
researchProduct

Robust control of uncertain multi-inventory systems via linear matrix inequality

2008

We consider a continuous time linear multi inventory system with unknown demands bounded within ellipsoids and controls bounded within ellipsoids or polytopes. We address the problem of "-stabilizing the inventory since this implies some reduction of the inventory costs. The main results are certain conditions under which "-stabilizability is possible through a saturated linear state feedback control. All the results are based on a Linear Matrix Inequalities (LMIs) approach and on some recent techniques for the modeling and analysis of polytopic systems with saturations.

Mathematical optimizationLinear Matrix InequalitiesPolytopeDynamical Systems (math.DS)stock control93xxcontinuous systems linear matrix inequalities linear systems manufacturing systems robust control state feedback stock control uncertain systemsimpulse control inventory control hybrid systemsSettore ING-INF/04 - AutomaticaControl theoryFOS: Mathematicsmanufacturing systemsMathematics - Dynamical Systemslinear matrix inequalitiesstate feedbackTime complexityMathematics - Optimization and ControlInventory systemsMathematicsInventory controlLinear Matrix Inequalities; Inventory systemsLinear systemlinear systemsLinear matrix inequality93Cxx;93xxLinearity93Cxxhybrid systemsEllipsoidComputer Science Applicationsimpulse control; inventory control; hybrid systemsuncertain systemsControl and Systems EngineeringOptimization and Control (math.OC)Control systemBounded functioncontinuous systemsPerpetual inventorycontinuous systems; linear matrix inequalities; linear systems; manufacturing systems; robust control; state feedback; stock control; uncertain systemsinventory controlRobust controlSettore MAT/09 - Ricerca Operativarobust controlimpulse control
researchProduct

Estimation of Lyapunov dimension for the Chen and Lu systems

2015

Nowadays various estimates of Lyapunov dimension of Lorenz-like systems attractors are actively developed. Within the frame of this study the question arises whether it is possible to obtain the corresponding estimates of dimension for the Chen and Lu systems using the reduction of them to the generalized Lorenz system. In the work (Chen and Yang, 2013) Leonov's method was applied for the estimation of Lyapunov dimension, and as a consequence the Lyapunov dimension of attractors of the Chen and Lu systems with the classical parameters was estimated. In the present work an inaccuracy in (Chen and Yang, 2013) is corrected and it is shown that the revised domain of parameters, where the estima…

Nonlinear Sciences::Chaotic DynamicsMathematics::Dynamical SystemsFOS: MathematicsFOS: Physical sciencesDynamical Systems (math.DS)Chaotic Dynamics (nlin.CD)Mathematics - Dynamical SystemsNonlinear Sciences - Chaotic Dynamics
researchProduct

Persistence in complex systems

2022

Persistence is an important characteristic of many complex systems in nature, related to how long the system remains at a certain state before changing to a different one. The study of complex systems' persistence involves different definitions and uses different techniques, depending on whether short-term or long-term persistence is considered. In this paper we discuss the most important definitions, concepts, methods, literature and latest results on persistence in complex systems. Firstly, the most used definitions of persistence in short-term and long-term cases are presented. The most relevant methods to characterize persistence are then discussed in both cases. A complete literature r…

fractal dimensionFOS: Computer and information sciencesComplex systemsRenewable energyglobal solar-radiationsystems' statesComplex networksGeneral Physics and AstronomyFOS: Physical scienceslong-term and short-term methodsadaptationzero-temperature dynamicsDynamical Systems (math.DS)Physics - GeophysicsneurosciencememoryMethodology (stat.ME)PersistenceOptimization and planningMemoryMachine learningearthquake magnitude seriesFOS: MathematicsAtmosphere and climateMathematics - Dynamical SystemsAdaptationcomplex systemslow-visibility eventstime-seriesStatistics - Methodologyinflation persistenceLong-term and short-term methodsdetrended fluctuation analysislong-range correlationspersistencecomplex networksSystems’ statesEconomyneural networksrenewable energyGeophysics (physics.geo-ph)atmosphere and climateeconomymachine learningoptimization and planningNeural networkswind-speedNeuroscience
researchProduct

Host–virus evolutionary dynamics with specialist and generalist infection strategies: Bifurcations, bistability, and chaos

2019

In this work, we have investigated the evolutionary dynamics of a generalist pathogen, e.g., a virus population, that evolves toward specialization in an environment with multiple host types. We have particularly explored under which conditions generalist viral strains may rise in frequency and coexist with specialist strains or even dominate the population. By means of a nonlinear mathematical model and bifurcation analysis, we have determined the theoretical conditions for stability of nine identified equilibria and provided biological interpretation in terms of the infection rates for the viral specialist and generalist strains. By means of a stability diagram, we identified stable fixed…

BistabilityPopulationGeneral Physics and AstronomyDynamical Systems (math.DS)Fixed pointParameter spaceBiologyGeneralist and specialist speciesModels Biological01 natural sciencesStability (probability)010305 fluids & plasmas0103 physical sciencesFOS: MathematicsHumansQuantitative Biology::Populations and EvolutionComputer SimulationMathematics - Dynamical SystemsQuantitative Biology - Populations and Evolution010306 general physicsEvolutionary dynamicseducationMathematical Physicseducation.field_of_studyApplied MathematicsDegenerate energy levelsPopulations and Evolution (q-bio.PE)Statistical and Nonlinear Physics3. Good healthNonlinear DynamicsEvolutionary biologyFOS: Biological sciencesHost-Pathogen InteractionsVirusesVirus Physiological Phenomena
researchProduct