Search results for " dynamical systems"
showing 10 items of 165 documents
Pseudo-abelian integrals: Unfolding generic exponential case
2009
The search for bounds on the number of zeroes of Abelian integrals is motivated, for instance, by a weak version of Hilbert's 16th problem (second part). In that case one considers planar polynomial Hamiltonian perturbations of a suitable polynomial Hamiltonian system, having a closed separatrix bounding an area filled by closed orbits and an equilibrium. Abelian integrals arise as the first derivative of the displacement function with respect to the energy level. The existence of a bound on the number of zeroes of these integrals has been obtained by A. N. Varchenko [Funktsional. Anal. i Prilozhen. 18 (1984), no. 2, 14–25 ; and A. G. Khovanskii [Funktsional. Anal. i Prilozhen. 18 (1984), n…
Fractal Weyl law for open quantum chaotic maps
2014
We study the semiclassical quantization of Poincar\'e maps arising in scattering problems with fractal hyperbolic trapped sets. The main application is the proof of a fractal Weyl upper bound for the number of resonances/scattering poles in small domains near the real axis. This result encompasses the case of several convex (hard) obstacles satisfying a no-eclipse condition.
Bifurcations in the elementary Desboves family
2017
International audience; We give an example of a family of endomorphisms of $\mathbb{P}^2(\mathbb{C})$ whose Julia set depends continuously on the parameter and whose bifurcation locus has non-empty interior.
Up, down, two-sided Lorenz attractor, collisions, merging and switching
2021
We present a slightly modified version of the well known "geometric Lorenz attractor". It consists in a C1 open set O of vector fields in R3 having an attracting region U containing: (1) a unique singular saddle point sigma; (2) a unique attractor Lambda containing the singular point; (3) the maximal invariant in U contains at most 2 chain recurrence classes, which are Lambda and (at most) one hyperbolic horseshoe. The horseshoe and the singular attractor have a collision along the union of 2 co-dimension 1 sub-manifolds which divide O in 3 regions. By crossing this collision locus, the attractor and the horseshoe may merge in a two-sided Lorenz attractor, or they may exchange their nature:…
The centralizer of a C1 generic diffeomorphism is trivial
2007
In this announcement, we describe the solution in the C1 topology to a question asked by S. Smale on the genericity of trivial centralizers: the set of diffeomorphisms of a compact connected manifold with trivial centralizer residual in Diff^1 but does not contain an open and dense subset.
Rotation Forms and Local Hamiltonian Monodromy
2017
International audience; The monodromy of torus bundles associated with completely integrable systems can be computed using geometric techniques (constructing homology cycles) or analytic arguments (computing discontinuities of abelian integrals). In this article, we give a general approach to the computation of monodromy that resembles the analytical one, reducing the problem to the computation of residues of polar 1-forms. We apply our technique to three celebrated examples of systems with monodromy (the champagne bottle, the spherical pendulum, the hydrogen atom) and to the case of non-degenerate focus-focus singularities, re-obtaining the classical results. An advantage of this approach …
Existence of common zeros for commuting vector fields on 3‐manifolds II. Solving global difficulties
2020
We address the following conjecture about the existence of common zeros for commuting vector fields in dimension three: if $X,Y$ are two $C^1$ commuting vector fields on a $3$-manifold $M$, and $U$ is a relatively compact open such that $X$ does not vanish on the boundary of $U$ and has a non vanishing Poincar\'e-Hopf index in $U$, then $X$ and $Y$ have a common zero inside $U$. We prove this conjecture when $X$ and $Y$ are of class $C^3$ and every periodic orbit of $Y$ along which $X$ and $Y$ are collinear is partially hyperbolic. We also prove the conjecture, still in the $C^3$ setting, assuming that the flow $Y$ leaves invariant a transverse plane field. These results shed new light on t…
Discretization of harmonic measures for foliated bundles
2012
We prove in this note that there is, for some foliated bundles, a bijective correspondance between Garnett's harmonic measures and measures on the fiber that are stationary for some probability measure on the holonomy group. As a consequence, we show the uniqueness of the harmonic measure in the case of some foliations transverse to projective fiber bundles.
Dynamics of the scenery flow and geometry of measures
2015
We employ the ergodic theoretic machinery of scenery flows to address classical geometric measure theoretic problems on Euclidean spaces. Our main results include a sharp version of the conical density theorem, which we show to be closely linked to rectifiability. Moreover, we show that the dimension theory of measure-theoretical porosity can be reduced back to its set-theoretic version, that Hausdorff and packing dimensions yield the same maximal dimension for porous and even mean porous measures, and that extremal measures exist and can be chosen to satisfy a generalized notion of self-similarity. These are sharp general formulations of phenomena that had been earlier found to hold in a n…
Multiplicity of fixed points and growth of ε-neighborhoods of orbits
2012
We study the relationship between the multiplicity of a fixed point of a function g, and the dependence on epsilon of the length of epsilon-neighborhood of any orbit of g, tending to the fixed point. The relationship between these two notions was discovered before (Elezovic, Zubrinic, Zupanovic) in the differentiable case, and related to the box dimension of the orbit. Here, we generalize these results to non-differentiable cases introducing a new notion of critical Minkowski order. We study the space of functions having a development in a Chebyshev scale and use multiplicity with respect to this space of functions. With the new definition, we recover the relationship between multiplicity o…