Search results for " dynamical systems"

showing 10 items of 165 documents

An operator-like description of love affairs

2010

We adopt the so--called \emph{occupation number representation}, originally used in quantum mechanics and recently considered in the description of stock markets, in the analysis of the dynamics of love relations. We start with a simple model, involving two actors (Alice and Bob): in the linear case we obtain periodic dynamics, whereas in the nonlinear regime either periodic or quasiperiodic solutions are found. Then we extend the model to a love triangle involving Alice, Bob and a third actress, Carla. Interesting features appear, and in particular we find analytical conditions for the linear model of love triangle to have periodic or quasiperiodic solutions. Numerical solutions are exhibi…

Physics - Physics and SocietyPure mathematicsLove affairDynamical systems theoryApplied MathematicsBosonic operators; Heisenberg-like dynamics; Dynamical systems; Numerical integration of ordinary differential equationsLinear modelFOS: Physical sciencesPhysics and Society (physics.soc-ph)Canonical commutation relationNonlinear systemTheoretical physicsNumber representationAlice and BobSettore MAT/07 - Fisica MatematicaMathematics
researchProduct

A Hardware and Secure Pseudorandom Generator for Constrained Devices

2018

Hardware security for an Internet of Things or cyber physical system drives the need for ubiquitous cryptography to different sensing infrastructures in these fields. In particular, generating strong cryptographic keys on such resource-constrained device depends on a lightweight and cryptographically secure random number generator. In this research work, we have introduced a new hardware chaos-based pseudorandom number generator, which is mainly based on the deletion of an Hamilton cycle within the $N$ -cube (or on the vectorial negation), plus one single permutation. We have rigorously proven the chaotic behavior and cryptographically secure property of the whole proposal: the mid-term eff…

Applied cryptography; Chaotic circuits; Constrained devices; Discrete dynamical systems; FPGA; Lightweight Cryptography; Random number generators; Statistical tests; Control and Systems Engineering; Information Systems; Computer Science Applications1707 Computer Vision and Pattern Recognition; Electrical and Electronic EngineeringHardware security moduleComputer scienceRandom number generationCryptography[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE]02 engineering and technologyPseudorandom generatorConstrained devicesLightweight CryptographyChaotic circuits[INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]PermutationRandom number generatorsStatistical tests0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringField-programmable gate arrayThroughput (business)FPGAPseudorandom number generatorGenerator (category theory)business.industry020208 electrical & electronic engineeringComputer Science Applications1707 Computer Vision and Pattern Recognition020206 networking & telecommunicationsDiscrete dynamical systems[INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationComputer Science ApplicationsApplied cryptography[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]Control and Systems EngineeringKey (cryptography)[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET][INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]businessComputer hardwareInformation SystemsIEEE Transactions on Industrial Informatics
researchProduct

Normal forms of hyperbolic logarithmic transseries

2021

We find the normal forms of hyperbolic logarithmic transseries with respect to parabolic logarithmic normalizing changes of variables. We provide a necessary and sufficient condition on such transseries for the normal form to be linear. The normalizing transformations are obtained via fixed point theorems, and are given algorithmically, as limits of Picard sequences in appropriate topologies.

Applied MathematicsMathematics::History and OverviewFOS: Mathematicsfixed point theory ; formal normal forms ; hyperbolic fixed point ; Koenigs sequence ; linearization ; logarithmic transseries[MATH] Mathematics [math]Dynamical Systems (math.DS)Mathematics - Dynamical Systems[MATH]Mathematics [math]34C20 37C25 47H10 39B12 46A19 26A12 12J15AnalysisJournal of Differential Equations
researchProduct

A short survey on nonlinear models of the classic Costas loop: rigorous derivation and limitations of the classic analysis

2015

Rigorous nonlinear analysis of the physical model of Costas loop --- a classic phase-locked loop (PLL) based circuit for carrier recovery, is a challenging task. Thus for its analysis, simplified mathematical models and numerical simulation are widely used. In this work a short survey on nonlinear models of the BPSK Costas loop, used for pre-design and post-design analysis, is presented. Their rigorous derivation and limitations of classic analysis are discussed. It is shown that the use of simplified mathematical models, and the application of non rigorous methods of analysis (e.g., simulation and linearization) may lead to wrong conclusions concerning the performance of the Costas loop ph…

Computer simulationMathematical modelta213Computer scienceta111Phase locked loopsDynamical Systems (math.DS)SurveysSynchronizationLoop (topology)Phase-locked loopNonlinear systemLinearizationCostas loopFOS: MathematicsNonlinear systemsApplied mathematicsCarrier recoveryMathematics - Dynamical Systems
researchProduct

Unfolding of saddle-nodes and their Dulac time

2016

Altres ajuts: UNAB10-4E-378, co-funded by ERDF "A way to build Europe" and by the French ANR-11-BS01-0009 STAAVF. In this paper we study unfoldings of saddle-nodes and their Dulac time. By unfolding a saddle-node, saddles and nodes appear. In the first result (Theorem A) we give a uniform asymptotic expansion of the trajectories arriving at the node. Uniformity is with respect to all parameters including the unfolding parameter bringing the node to a saddle-node and a parameter belonging to a space of functions. In the second part, we apply this first result for proving a regularity result (Theorem B) on the Dulac time (time of Dulac map) of an unfolding of a saddle-node. This result is a b…

[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Block (permutation group theory)Dynamical Systems (math.DS)Space (mathematics)01 natural sciencesCombinatoricsQuadratic equationFOS: MathematicsMathematics - Dynamical Systems0101 mathematicsBifurcationSaddleMathematicsPeriod functionApplied MathematicsUnfolding of a saddle-node010102 general mathematics16. Peace & justice010101 applied mathematicsMSC: 34C07Asymptotic expansions34C07Node (circuits)Asymptotic expansionAnalysis
researchProduct

Local dimensions of measures on infinitely generated self-affine sets

2014

We show the existence of the local dimension of an invariant probability measure on an infinitely generated self-affine set, for almost all translations. This implies that an ergodic probability measure is exactly dimensional. Furthermore the local dimension equals the minimum of the local Lyapunov dimension and the dimension of the space. We also give an estimate, that holds for all translation vectors, with only assuming the affine maps to be contractive.

Discrete mathematicsmatematiikka28A80Applied Mathematicsta111Minkowski–Bouligand dimensionDimension functionMetric Geometry (math.MG)Dynamical Systems (math.DS)Complex dimensionEffective dimensionPacking dimensionMathematics - Metric GeometryHausdorff dimensionFOS: MathematicsdimensionsMathematics - Dynamical SystemsDimension theory (algebra)Inductive dimensionulottuvuudetAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Dimensions of random affine code tree fractals

2014

We calculate the almost sure Hausdorff dimension for a general class of random affine planar code tree fractals. The set of probability measures describing the randomness includes natural measures in random $V$-variable and homogeneous Markov constructions.

Discrete mathematicsCode (set theory)v-variable fractalsApplied MathematicsGeneral MathematicsProbability (math.PR)ta111Dynamical Systems (math.DS)self-similar setsTree (descriptive set theory)Box countingFractalIterated function systemMathematics - Classical Analysis and ODEsHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsAffine transformationMathematics - Dynamical Systems28A80 60D05 37H99RandomnessMathematics - ProbabilityMathematics
researchProduct

Anomalous Anosov flows revisited

2017

This paper is devoted to higher dimensional Anosov flows and consists of two parts. In the first part, we investigate fiberwise Anosov flows on affine torus bundles which fiber over 3-dimensional Anosov flows. We provide a dichotomy result for such flows --- they are either suspensions of Anosov diffeomorphisms or the stable and unstable distributions have equal dimensions. In the second part, we give a new surgery type construction of Anosov flows, which yields non-transitive Anosov flows in all odd dimensions.

Pure mathematicsdiffeomorphismsMathematics::Dynamical Systems37D30Fiber (mathematics)General Mathematics010102 general mathematics37D30 (primary)TorusGeometric Topology (math.GT)Dynamical Systems (math.DS)Type (model theory)01 natural sciencesMathematics::Geometric TopologyPhysics::Fluid DynamicsMathematics - Geometric Topology0103 physical sciencesFOS: Mathematics010307 mathematical physicsAffine transformation0101 mathematics[MATH]Mathematics [math]Mathematics - Dynamical SystemsMathematics::Symplectic GeometryMathematics
researchProduct

Finiteness properties of pseudo-hyperbolic varieties

2019

Motivated by Lang-Vojta's conjecture, we show that the set of dominant rational self-maps of an algebraic variety over a number field with only finitely many rational points in any given number field is finite by combining Amerik's theorem for dynamical systems of infinite order with properties of Prokhorov-Shramov's notion of quasi-minimal models. We also prove a similar result in the geometric setting by using again Amerik's theorem and Prokhorov-Shramov's notion of quasi-minimal model, but also Weil's regularization theorem for birational self-maps and properties of dynamical degrees. Furthermore, in the geometric setting, we obtain an analogue of Kobayashi-Ochiai's finiteness result for…

Pure mathematicsDynamical systems theoryGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Type (model theory)01 natural sciencesSurjective functionMathematics - Algebraic Geometry0103 physical sciencesFOS: MathematicsNumber Theory (math.NT)0101 mathematicsMathematics - Dynamical Systems[MATH]Mathematics [math]Algebraic Geometry (math.AG)MathematicsConjectureMathematics - Number Theory010102 general mathematicsOrder (ring theory)Algebraic varietyAlgebraic number field[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]Regularization (physics)010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct

Self-affine sets with fibered tangents

2016

We study tangent sets of strictly self-affine sets in the plane. If a set in this class satisfies the strong separation condition and projects to a line segment for sufficiently many directions, then for each generic point there exists a rotation $\mathcal O$ such that all tangent sets at that point are either of the form $\mathcal O((\mathbb R \times C) \cap B(0,1))$, where $C$ is a closed porous set, or of the form $\mathcal O((\ell \times \{ 0 \}) \cap B(0,1))$, where $\ell$ is an interval.

Pure mathematicsClass (set theory)General MathematicsDynamical Systems (math.DS)Interval (mathematics)iterated function system01 natural sciencesself-affine setGeneric pointLine segmentstrictly self-affine sets0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsPoint (geometry)Porous set0101 mathematicsMathematics - Dynamical SystemsMathematicsApplied Mathematics010102 general mathematicsta111Tangenttangent setsTangent setMathematics - Classical Analysis and ODEs010307 mathematical physicsAffine transformation
researchProduct