Search results for " finite automata"
showing 10 items of 76 documents
Quantum, stochastic, and pseudo stochastic languages with few states
2014
Stochastic languages are the languages recognized by probabilistic finite automata (PFAs) with cutpoint over the field of real numbers. More general computational models over the same field such as generalized finite automata (GFAs) and quantum finite automata (QFAs) define the same class. In 1963, Rabin proved the set of stochastic languages to be uncountable presenting a single 2-state PFA over the binary alphabet recognizing uncountably many languages depending on the cutpoint. In this paper, we show the same result for unary stochastic languages. Namely, we exhibit a 2-state unary GFA, a 2-state unary QFA, and a family of 3-state unary PFAs recognizing uncountably many languages; all th…
Superiority of exact quantum automata for promise problems
2011
In this note, we present an infinite family of promise problems which can be solved exactly by just tuning transition amplitudes of a two-state quantum finite automata operating in realtime mode, whereas the size of the corresponding classical automata grow without bound.
Classical automata on promise problems
2015
Promise problems were mainly studied in quantum automata theory. Here we focus on state complexity of classical automata for promise problems. First, it was known that there is a family of unary promise problems solvable by quantum automata by using a single qubit, but the number of states required by corresponding one-way deterministic automata cannot be bounded by a constant. For this family, we show that even two-way nondeterminism does not help to save a single state. By comparing this with the corresponding state complexity of alternating machines, we then get a tight exponential gap between two-way nondeterministic and one-way alternating automata solving unary promise problems. Secon…
Exact affine counter automata
2017
We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic k-counter automata. We also show that a certain promise problem, which is conjectured not to be solved by two-way quantum finite automata in polynomial time, can be solved by Las Vegas affine finite automata. Lastly, we show that how a counter helps for affine finite automata by showing that the language MANYTWINS, which is conjectured not to be recognized by affin…
Quantum inductive inference by finite automata
2008
AbstractFreivalds and Smith [R. Freivalds, C.H. Smith Memory limited inductive inference machines, Springer Lecture Notes in Computer Science 621 (1992) 19–29] proved that probabilistic limited memory inductive inference machines can learn with probability 1 certain classes of total recursive functions, which cannot be learned by deterministic limited memory inductive inference machines. We introduce quantum limited memory inductive inference machines as quantum finite automata acting as inductive inference machines. These machines, we show, can learn classes of total recursive functions not learnable by any deterministic, nor even by probabilistic, limited memory inductive inference machin…
Complexity of probabilistic versus deterministic automata
2005
Exact results for accepting probabilities of quantum automata
2001
One of the properties of Kondacs-Watrous model of quantum finite automata (QFA) is that the probability of the correct answer for a QFA cannot be amplified arbitrarily. In this paper, we determine the maximum probabilities achieved by QFAs for several languages. In particular, we show that any language that is not recognized by an RFA (reversible finite automaton) can be recognized by a QFA with probability at most 0.7726...
Mathematical logic and quantum finite state automata
2009
AbstractThis paper is a review of the connection between formulas of logic and quantum finite-state automata in respect to the language recognition and acceptance probability of quantum finite-state automata. As is well known, logic has had a great impact on classical computation, it is promising to study the relation between quantum finite-state automata and mathematical logic. After a brief introduction to the connection between classical computation and logic, the required background of the logic and quantum finite-state automata is provided and the results of the connection between quantum finite-state automata and logic are presented.
Representation of Autonomous Automata
2001
An autonomous automaton is a finite automaton with output in which the input alphabet has cardinality one when special reduced. We define the transition from automata to semigroups via a representation successful if given two incomparable automata (neither simulate the other), the semigroups representing the automata are distinct. We show that representation by the transition semigroup is not successful. We then consider a representation of automata by semigroups of partial transformations. We show that in general transition from automata to semigroups by this representation is not successful either. In fact, the only successful transition presented is the transiton to this semigroup of par…
Quantum Finite One-Counter Automata
1999
In this paper the notion of quantum finite one-counter automata (QF1CA) is introduced. Introduction of the notion is similar to that of the 2-way quantum finite state automata in [1]. The well-formedness conditions for the automata are specified ensuring unitarity of evolution. A special kind of QF1CA, called simple, that satisfies the well-formedness conditions is introduced. That allows specify rules for constructing such automata more naturally and simpler than in general case. Possible models of language recognition by QF1CA are considered. The recognition of some languages by QF1CA is shown and compared with recognition by probabilistic counterparts.