Search results for " fluid"

showing 10 items of 3232 documents

Recent improvements of the LPSC charge breeder

2017

International audience; PSC has developed the PHOENIX electron cyclotron resonance Charge Breeder since 2000. The performances have been improved over time acting on the 1+ and N+ beam optics, the base vacuum and the 1+ beam injection. A new objective is to update the booster design to enhance high charge state production and 1+ N+ efficiencies, reduce the co-extracted background beam and improve the ion source tunability. The first step, consisting in increasing the peak magnetic field at injection from 1.2 T to 1.6 T was implemented and significant improvement in 1+N+ efficiencies are reported: 12.9% of 23Na8+, 24.2% of 40Ar8+, 13.3% of 132Xe26+ and 13% of 133Cs26+. The next steps of the …

010302 applied physicsMaterials scienceta114Nuclear engineering[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]syklotronitCharge (physics)plasmatekniikka01 natural sciences7. Clean energy010305 fluids & plasmaselectron cyclotron resonanceBreeder (animal)0103 physical sciencesplasma
researchProduct

Photoelectron Emission from Metal Surfaces Induced by Radiation Emitted by a 14 GHz Electron Cyclotron Resonance Ion Source

2015

Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma. peerReviewed

010302 applied physicsMaterials scienceta114Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCyclotron resonanceBremsstrahlungFOS: Physical sciencesPlasmaElectronphotoelectron emissionRadiation01 natural sciences7. Clean energyElectron cyclotron resonanceIon sourcePhysics - Plasma Physics010305 fluids & plasmasPlasma Physics (physics.plasm-ph)Physics::Plasma Physics0103 physical scienceselectron cyclotron resonance ion sourcesPlasma diagnosticsAtomic physicsInstrumentation
researchProduct

New progress of high current gasdynamic ion source (invited).

2016

The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm−3 ) …

010302 applied physicsMaterials scienceta114ta213ion beamsPlasma01 natural sciencesIon sourceElectron cyclotron resonance010305 fluids & plasmaslaw.inventionIonlawGyrotronIonizationgasdynamic ECRIS0103 physical scienceselectron cyclotron resonance ion sourcesThermal emittanceAtomic physicsInstrumentationMicrowaveThe Review of scientific instruments
researchProduct

2020

Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that c…

010302 applied physicsMicroscopePhotonMaterials scienceResolution (electron density)Free-electron laserLaser01 natural sciences010305 fluids & plasmaslaw.inventionMomentumTime of flightlaw0103 physical sciencesAtomic physicsInstrumentationUltrashort pulseReview of Scientific Instruments
researchProduct

A New Multipactor Effect Model for Dielectric-Loaded Rectangular Waveguides

2019

Multipactor is an electron discharge that may appear in particle accelerators and microwave devices such as filters, multiplexers, and RF satellite payloads in satellite on-board equipment under vacuum conditions. When some resonance conditions are satisfied, secondary electrons get synchronized with the RF fields, and the electron population inside the device grows exponentially leading to a multipactor discharge. This multipactor discharge has some negative effects that degrade the device performance: increase of signal noise and reflected power, heating of the device walls, outgassing, detuning of resonant cavities, and even the partial or total destruction of the component. The main aim…

010302 applied physicsMultipactor effectMaterials sciencebusiness.industryParticle acceleratorElectron01 natural sciencesSignalSecondary electrons010305 fluids & plasmaslaw.inventionOutgassingOpticslaw0103 physical sciencesbusinessNoise (radio)Microwave2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)
researchProduct

Study of the Secondary Electron Yield in Dielectrics Using Equivalent Circuital Models

2018

[EN] Secondary electron emission has an important role on the triggering of the multipactor effect; therefore, its study and characterization are essential in radio-frequency waveguide applications. In this paper, we propose a theoretical model, based on equivalent circuit models, to properly understand charging and discharging processes that occur in dielectric samples under electron irradiation for secondary electron emission characterization. Experimental results obtained for Pt, Si, GaS, and Teflon samples are presented to verify the accuracy of the proposed model. Good agreement between theory and experiments has been found.

010302 applied physicsMultipactor effectNuclear and High Energy PhysicsWaveguide (electromagnetism)Materials scienceDielectricCondensed Matter Physics01 natural sciencesSecondary electrons010305 fluids & plasmasCharacterization (materials science)Computational physicsSecondary electron emission (SEE)Secondary emission0103 physical sciencesRadio frequencyTEORIA DE LA SEÑAL Y COMUNICACIONESElectron beam processingEquivalent circuitMultipactor effectSecondary electron yield
researchProduct

Development, Characterization, and Testing of a SiC-Based Material for Flow Channel Inserts in High-Temperature DCLL Blankets

2018

This work has been carried out within the framework of the EUROfusion Consortium. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceFabricationelectrical conductivityBlanketCondensed Matter Physics01 natural sciencesTemperature measurement010305 fluids & plasmasCorrosionchemistry.chemical_compoundThermal conductivitydual-coolant lead-lithium (DCLL) blanketFlexural strengthchemistryCorrosion by PbLi0103 physical sciencesThermalSilicon carbide:NATURAL SCIENCES:Physics [Research Subject Categories]flow channel insert (FCI)thermal conductivityComposite materialporous SiCIEEE Transactions on Plasma Science
researchProduct

Charge breeding time investigations of electron cyclotron resonance charge breeders

2018

To qualify electron cyclotron resonance charge breeders, the method that is traditionally used to evaluate the charge breeding time consists in generating a rising edge of the injected beam current and measuring the time in which the extracted multicharged ion beam reaches 90% of its final current. It is demonstrated in the present paper that charge breeding times can be more accurately measured by injecting short pulses of 1 + ions and recording the time resolved responses of N + ions. This method is used to probe the effect of the 1 + ion accumulation in the plasma known to disturb the buffer gas plasma equilibrium and is a step further in understanding the large discrepancies reported in…

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencePhysics and Astronomy (miscellaneous)ta114syklotronit[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]electronsCharge (physics)Surfaces and Interfacesresonanssielektronit7. Clean energy01 natural sciencesElectron cyclotron resonance010305 fluids & plasmasresonance0103 physical sciencescharge breederslcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityAtomic physicscyclotronsReview Articles
researchProduct

On the mechanics of magnetic fluids with field-induced phase transition: application to Couette flow

2018

The influence of Brownian diffusion and magnetophoresis, which are followed by phase transition, on the characteristics of a stationary plane Couette flow of magnetic fluid in a non-uniform magnetic field is discussed. The phase transition conditions in magnetic fluids are assumed as a natural restriction to the particle concentration increase in a non-uniform magnetic field. Profiles of the particles' concentration are calculated, and dependences of the volume magnetic force and of the viscous force are established. © 2018 Institute of Physics, University of Latvia.

010302 applied physicsPhase transitionMaterials scienceField (physics)magnetophoresisPlane (geometry)brownian diffusionmagnetic fluidGeneral Physics and Astronomymagnetic field02 engineering and technologyMechanics021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldPhysics::Fluid DynamicsVolume (thermodynamics)phase transition0103 physical sciences[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]Electrical and Electronic Engineering0210 nano-technologyCouette flowCouette flowBrownian motion
researchProduct

Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens

2021

Review of scientific instruments 92(5), 053703 (2021). doi:10.1063/5.0046567

010302 applied physicsPhotonMaterials scienceElectronPhotoelectric effect01 natural sciencesFluenceSpace charge010305 fluids & plasmas620Electric fieldExtreme ultraviolet0103 physical sciencesddc:620Atomic physicsInstrumentationStorage ring
researchProduct