Search results for " forecasting"

showing 10 items of 163 documents

A novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibility.

2020

Land subsidence (LS) is a significant problem that can cause loss of life, damage property, and disrupt local economies. The Semnan Plain is an important part of Iran, where LS is a major problem for sustainable development and management. The plain represents the changes occurring in 40% of the country. We introduce a novel-ensemble intelligence approach (called ANN-bagging) that uses bagging as a meta- or ensemble-classifier of an artificial neural network (ANN) to predict LS spatially on the Semnan Plain in Semnan Province, Iran. The ensemble model's goodness-of-fit (to training data) and prediction accuracy (of the validation data) are compared to benchmarks set by ANN-bagging. A total …

Environmental Engineering010504 meteorology & atmospheric sciencesArtificial neural networkEnsemble forecastingElevationComputational intelligenceK-fold cross-validation (CV)Land cover010501 environmental sciences01 natural sciencesPollutionRandom forestSemnan PlainStatisticsDrawdown (hydrology)Land-subsidence susceptibilityEnvironmental ChemistryEnsemble methodWaste Management and DisposalGroundwaterEnvironmental Sciences0105 earth and related environmental sciencesMathematics
researchProduct

Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling

2017

Gully erosion is identified as an important sediment source in a range of environments and plays a conclusive role in redistribution of eroded soils on a slope. Hence, addressing spatial occurrence pattern of this phenomenon is very important. Different ensemble models and their single counterparts, mostly data mining methods, have been used for gully erosion susceptibility mapping; however, their calibration and validation procedures need to be thoroughly addressed. The current study presents a series of individual and ensemble data mining methods including artificial neural network (ANN), support vector machine (SVM), maximum entropy (ME), ANN-SVM, ANN-ME, and SVM-ME to map gully erosion …

Environmental EngineeringSòls Erosió010504 meteorology & atmospheric sciencesEnsemble forecastingPrinciple of maximum entropy010501 environmental sciencescomputer.software_genre01 natural sciencesPollutionStability (probability)Support vector machineGoodness of fitRobustness (computer science)StatisticsRange (statistics)Environmental ChemistryData miningWaste Management and Disposalcomputer0105 earth and related environmental sciencesMathematicsStatistical hypothesis testingScience of The Total Environment
researchProduct

Non-parametric probabilistic forecasting of academic performance in Spanish high school using an epidemiological modelling approach

2013

Academic underachievement is a concern of paramount importance in Europe, and particularly in Spain, where around of 30% of the students in the last two courses in high school do not achieve the minimum knowledge academic requirement. In order to analyse this problem, we propose a mathematical model via a system of ordinary differential equations to study the dynamics of the academic performance in Spain. Our approach is based on the idea that both, good and bad study habits, are a mixture of personal decisions and influence of classmates. Moreover, in order to consider the uncertainty in the estimation of model parameters, a bootstrapping approach is employed. This technique permits to for…

EstimationComputer scienceBootstrappingApplied MathematicsNonparametric statisticsUncertaintyModel parametersConfidence intervalModellingComputational MathematicsTransmission dynamicsOrder (exchange)EconometricsBootstrappingProbabilistic forecastingAcademic underachievementPredictionMATEMATICA APLICADA
researchProduct

Exponential smoothing with covariates applied to electricity demand forecast

2013

Exponential smoothing methods are widely used as forecasting techniques in industry and business. Their usual formulation, however, does not allow covariates to be used for introducing extra information into the forecasting process. In this paper, we analyse an extension of the exponential smoothing formulation that allows the use of covariates and the joint estimation of all the unknowns in the model, which improves the forecasting results. The whole procedure is detailed with a real example on forecasting the daily demand for electricity in Spain. The time series of daily electricity demand contains two seasonal patterns: here the within-week seasonal cycle is modelled as usual in exponen…

EstimationSeries (mathematics)business.industryExponential smoothingEnergy forecastingElectricity demandIndustrial and Manufacturing EngineeringCovariateEconometricsEconomicsElectricitybusinessSeasonal cyclePhysics::Atmospheric and Oceanic PhysicsEuropean J. of Industrial Engineering
researchProduct

Infant mortality gap in the Baltic region - Latvia, Estonia, and Lithuania - in relation to macroeconomic factors in 1996-2010.

2013

Background and Objective. A constant gap has appeared in infant mortality among the 3 Baltic States - Latvia, Estonia, and Lithuania – since the restoration of independence in 1991. The aim of the study was to compare infant mortality rates in all the 3 Baltic countries and examine some of the macro- and socioeconomic factors associated with infant mortality. Material and Methods. The data were obtained from international databases, such as World Health Organization and EUROSTAT, and the national statistical databases of the Baltic States. The time series data sets (1996–2010) were used in the regression and correlation analysis. Results. In all the 3 Baltic States, a strong and significant…

EstoniaMaleSocioekonominiai veiksniaimedia_common.quotation_subjectGross Domestic ProductMacroeconomicsSocioeconomic factorsWorld healthSveikata / HealthLietuva (Lithuania)Economic situationKoreliacijaStatistical significanceInfant MortalityPer capitaMedicineHumansSocioeconomic statusmedia_commonSocialiniai ekonominiai veiksniaibusiness.industryInfantLithuaniaGeneral MedicineLatviaInfant mortalityCorrelationUnemploymentCorrelation analysisFemaleEkonominė analizė. Prognozavimas / Economic analysis. Forecastingbusinessinfant mortality; Baltic States; correlation; macroeconomics; socioeconomic factorsDemographyMedicina (Kaunas, Lithuania)
researchProduct

Bayesian forecasting of demand time-series data with zero values

2013

This paper describes the development of a Bayesian procedure to analyse and forecast positive demand time-series data with a proportion of zero values and a high level of variability for the non-zero data. The resulting forecasts play decisive roles in organisational planning, budgeting, and performance monitoring. Exponential smoothing methods are widely used as forecasting techniques in industry and business. However, they can be unsuitable for the analysis of non-negative demand time-series data with the aforementioned features. In this paper, an unconstrained latent demand underlying the observed demand is introduced into the linear heteroscedastic model associated with the Holt-Winters…

Exponential smoothingBayesian probabilityEconometricsEconomicsPerformance monitoringHeteroscedastic modelDemand forecastingSupply chain planningTime seriesIndustrial and Manufacturing EngineeringZero (linguistics)European J. of Industrial Engineering
researchProduct

An ensemble approach to short-term forecast of COVID-19 intensive care occupancy in Italian Regions

2020

Abstract The availability of intensive care beds during the COVID‐19 epidemic is crucial to guarantee the best possible treatment to severely affected patients. In this work we show a simple strategy for short‐term prediction of COVID‐19 intensive care unit (ICU) beds, that has proved very effective during the Italian outbreak in February to May 2020. Our approach is based on an optimal ensemble of two simple methods: a generalized linear mixed regression model, which pools information over different areas, and an area‐specific nonstationary integer autoregressive methodology. Optimal weights are estimated using a leave‐last‐out rationale. The approach has been set up and validated during t…

FOS: Computer and information sciencesStatistics and ProbabilityTime FactorsOccupancyCoronavirus disease 2019 (COVID-19)Computer science01 natural sciencesGeneralized linear mixed modelSARS‐CoV‐2law.inventionclustered data; COVID-19; generalized linear mixed model; integer autoregressive; integer autoregressive model; panel data; SARS-CoV-2; weighted ensembleMethodology (stat.ME)panel data010104 statistics & probability03 medical and health sciences0302 clinical medicinelawCOVID‐19Intensive careEconometricsHumansclustered data030212 general & internal medicine0101 mathematicsPandemicsStatistics - MethodologySARS-CoV-2Reproducibility of ResultsCOVID-19General Medicineweighted ensembleIntensive care unitResearch PapersTerm (time)integer autoregressiveIntensive Care UnitsAutoregressive modelItalyNonlinear Dynamicsgeneralized linear mixed modelinteger autoregressive modelclustered data; COVID-19; generalized linear mixed model; integer autoregressive; integer autoregressive model; panel data; SARS-CoV-2; weighted ensemble; COVID-19; Humans; Intensive Care Units; Italy; Nonlinear Dynamics; Pandemics; Reproducibility of Results; Time Factors; ForecastingStatistics Probability and UncertaintySettore SECS-S/01Settore SECS-S/01 - StatisticaPanel dataResearch PaperForecasting
researchProduct

KFAS : Exponential Family State Space Models in R

2017

State space modelling is an efficient and flexible method for statistical inference of a broad class of time series and other data. This paper describes an R package KFAS for state space modelling with the observations from an exponential family, namely Gaussian, Poisson, binomial, negative binomial and gamma distributions. After introducing the basic theory behind Gaussian and non-Gaussian state space models, an illustrative example of Poisson time series forecasting is provided. Finally, a comparison to alternative R packages suitable for non-Gaussian time series modelling is presented.

FOS: Computer and information sciencesStatistics and ProbabilityaikasarjatGaussianNegative binomial distributionforecastingPoisson distribution01 natural sciencesStatistics - ComputationMethodology (stat.ME)010104 statistics & probability03 medical and health sciencessymbols.namesake0302 clinical medicineExponential familyexponential familyGamma distributionStatistical inferenceState spaceApplied mathematicsSannolikhetsteori och statistik030212 general & internal medicine0101 mathematicsProbability Theory and Statisticslcsh:Statisticslcsh:HA1-4737Computation (stat.CO)Statistics - MethodologyMathematicsR; exponential family; state space models; time series; forecasting; dynamic linear modelsta112state space modelsSeries (mathematics)RStatistics; Computer softwaresymbolsStatistics Probability and Uncertaintytime seriesSoftwaredynamic linear models
researchProduct

Corporate Investment, Debt and Liquidity Choices in the Light of Financial Constraints and Hedging Needs

2015

We examine firms' simultaneous choice of investment, debt financing and liquidity in a large sample of US corporates between 1980 and 2014. We partition the sample according to the firms' financial constraints and their needs to hedge against future shortfalls in operating income. In contrast to earlier work, our joint estimation approach shows that cash flows affect the corporate decisions of unconstrained firms more strongly than those of constrained firms. Investment-cash flow sensitivities are particularly intense for unconstrained firms with high hedging needs. Investment opportunities (as proxied by Q), however, play a larger role for constrained firms with the effects being strongest…

FinanceCash and cash equivalentsbusiness.industryjel:G31Financial systemCash flow forecastingCash conversion cyclejel:G32Market liquidityCorporate financeOperating cash flowCash flow statementCash flowPrice/cash flow ratioBusinessCash managementcash flow sensitivityinvestmentdebt issuancecash holdingsSSRN Electronic Journal
researchProduct

Financial constraints and cash–cash flow sensitivity

2014

This article explores the cash–cash flow relationship by comparing financially constrained and financially unconstrained companies. Unlike previous research, we test the sensitivity of cash to cash flow by considering unlisted firms as constrained and listed firms as unconstrained. Our empirical evidence is based on findings from Spanish firms and is consistent with the core rationale that unlisted firms face more difficulties than their listed counterparts when looking for funding from external markets. As a result, unlisted firms tend to hoard significant amounts of cash out of the generated cash flow, while listed firms do not. Our findings are robust to a number of additional empirical …

FinanceEconomics and Econometricsbusiness.industrymedia_common.quotation_subjectCash flow forecastingCore (game theory)Operating cash flowCashEconomicsCash flowCash flow statementEmpirical evidencebusinessCash managementmedia_commonApplied Economics
researchProduct