Search results for " gases"
showing 10 items of 941 documents
Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays.
2022
Exciton transport in most organic materials is based on an incoherent hopping process between neighboring molecules. This process is very slow, setting a limit to the performance of organic optoelectronic devices. In this Article, we overcome the incoherent exciton transport by strongly coupling localized singlet excitations in a tetracene crystal to confined light modes in an array of plasmonic nanoparticles. We image the transport of the resulting exciton–polaritons in Fourier space at various distances from the excitation to directly probe their propagation length as a function of the exciton to photon fraction. Exciton–polaritons with an exciton fraction of 50% show a propagation length…
Schrodinger equation and the quantization of celestial systems
2006
In the present article, we argue that it is possible to generalize Schrodinger equation to describe quantization of celestial systems. While this hypothesis has been described by some authors, including Nottale, here we argue that such a macroquantization was formed by topological superfluid vortice. We also provide derivation of Schrodinger equation from Gross-Pitaevskii-Ginzburg equation, which supports this superfluid dynamics interpretation.
Exotic crystal superstructures of colloidal crystals in confinement.
2008
Colloidal model systems have been used for over three decades for investigating liquids, crystals, and glasses. Colloidal crystal superstructures have been observed in binary systems of repulsive spheres as well as oppositely charged sphere systems showing structures well known from atomic solids. In this work we study the structural transition of colloidal crystals under confinement. In addition to the known sequence of crystalline structures, crystal superstructures with dodecagonal and hexagonal symmetry are observed in one component systems. These structures have no atomic counterpart.
Spatial and temporal distribution of phase slips in Josephson junction chains.
2017
Abstract The Josephson effect, tunnelling of a supercurrent through a thin insulator layer between two superconducting islands, is a phenomena characterized by a spatially distributed phase of the superconducting condensate. In recent years, there has been a growing focus on Josephson junction devices particularly for the applications of quantum metrology and superconducting qubits. In this study, we report the development of Josephson junction circuit formed by serially connecting many Superconducting Quantum Interference Devices, SQUIDs. We present experimental measurements as well as numerical simulations of a phase-slip center, a SQUID with weaker junctions, embedded in a Josephson junc…
Realistic investigations of correlated electron systems with LDA + DMFT
2006
Conventional band structure calculations in the local density approximation (LDA) [1–3] are highly successful for many materials, but miss important aspects of the physics and energetics of strongly correlated electron systems, such as transition metal oxides and f-electron systems displaying, e.g., Mott insulating and heavy quasiparticle behavior. In this respect, the LDA + DMFT approach which merges LDA with a modern many-body approach, the dynamical mean-field theory (DMFT), has proved to be a breakthrough for the realistic modeling of correlated materials. Depending on the strength of the electronic correlation, a LDA + DMFT calculation yields the weakly correlated LDA results, a strong…
Conditions for static friction between flat crystalline surfaces
2000
The conditions for the presence of static friction between two atomically smooth crystalline surfaces are investigated. Commensurate and incommensurate walls are studied. While two commensurate walls always pin at zero lateral force and positive pressures, incommensurate walls only pin if mobile atoms are present in the interface between the surfaces or if the solids are particularly soft. Surprisingly, static friction can be observed between rigid surfaces, either commensurate or incommensurate, that are separated by a freely diffusing fluid layer.
The effect of interactions on Bose-Einstein condensation in a quasi two-dimensional harmonic trap
1999
A dilute bose gas in a quasi two-dimensional harmonic trap and interacting with a repulsive two-body zero-range potential of fixed coupling constant is considered. Using the Thomas-Fermi method, it is shown to remain in the same uncondensed phase as the temperature is lowered. Its density profile and energy are identical to that of an ideal gas obeying the fractional exclusion statistics of Haldane. PACS: ~03.75.Fi, 05.30.Jp, 67.40.Db, 05.30.-d
Poly[μ2-chloro-μ2-1,4-oxathiane-κ2S:S-copper(I)]
2007
The title complex, [CuCl(C4H8OS)]n, contains infinite spiral (CuS)n chains linked by bridging Cl atoms into layers. The Cl atoms do not form polymeric fragments with CuI, but combine into isolated centrosymmetric Cu2Cl2 units. The compound is non-isomorphous with the Br-containing analogue, which contains Cu8S8 rings linked by Br atoms into chains. The O atom of the 1,4-oxathiane molecule does not realize its coordination abilities in the known copper(I)-halide complexes, while in copper(II)-halide complexes, oxathiane is coordinated via the S and O atoms. This falls into a pattern of the preferred interactions, viz. weak acid (CuI atom) with weak base (S atom) and harder acid (CuII atom)…
"Table 20" of "Energy dependence of event shapes and of alpha(s) at LEP-2."
1999
Distribution of Oblateness at cm energy 183 GeV.
Parallelization strategies for density matrix renormalization group algorithms on shared-memory systems
2003
Shared-memory parallelization (SMP) strategies for density matrix renormalization group (DMRG) algorithms enable the treatment of complex systems in solid state physics. We present two different approaches by which parallelization of the standard DMRG algorithm can be accomplished in an efficient way. The methods are illustrated with DMRG calculations of the two-dimensional Hubbard model and the one-dimensional Holstein-Hubbard model on contemporary SMP architectures. The parallelized code shows good scalability up to at least eight processors and allows us to solve problems which exceed the capability of sequential DMRG calculations.