6533b86dfe1ef96bd12caa19

RESEARCH PRODUCT

Parallelization strategies for density matrix renormalization group algorithms on shared-memory systems

Georg HagerGerhard WelleinEric JeckelmannHolger Fehske

subject

Condensed Matter::Quantum GasesDensity matrixNumerical AnalysisStrongly Correlated Electrons (cond-mat.str-el)Physics and Astronomy (miscellaneous)Hubbard modelApplied MathematicsDensity matrix renormalization groupComplex systemFOS: Physical sciencesParallel computingRenormalization groupComputer Science ApplicationsCondensed Matter - Strongly Correlated ElectronsComputational MathematicsShared memoryModeling and SimulationScalabilityCode (cryptography)Condensed Matter::Strongly Correlated ElectronsAlgorithmMathematics

description

Shared-memory parallelization (SMP) strategies for density matrix renormalization group (DMRG) algorithms enable the treatment of complex systems in solid state physics. We present two different approaches by which parallelization of the standard DMRG algorithm can be accomplished in an efficient way. The methods are illustrated with DMRG calculations of the two-dimensional Hubbard model and the one-dimensional Holstein-Hubbard model on contemporary SMP architectures. The parallelized code shows good scalability up to at least eight processors and allows us to solve problems which exceed the capability of sequential DMRG calculations.

https://doi.org/10.1016/j.jcp.2003.09.018