Search results for " machine"
showing 10 items of 1317 documents
GSaaS: A Service to Cloudify and Schedule GPUs
2018
Cloud technology is an attractive infrastructure solution that provides customers with an almost unlimited on-demand computational capacity using a pay-per-use approach, and allows data centers to increase their energy and economic savings by adopting a virtualized resource sharing model. However, resources such as graphics processing units (GPUs), have not been fully adapted to this model. Although, general-purpose computing on graphics processing units (GPGPU) is becoming more and more popular, cloud providers lack of flexibility to manage accelerators, because of the extended use of peripheral component interconnect (PCI) passthrough techniques to attach GPUs to virtual machines (VMs). F…
Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning.
2021
Coronavirus disease 2019 (COVID-19) is a major threat worldwide due to its fast spreading. As yet, there are no established drugs available. Speeding up drug discovery is urgently required. We applied a workflow of combined in silico methods (virtual drug screening, molecular docking and supervised machine learning algorithms) to identify novel drug candidates against COVID-19. We constructed chemical libraries consisting of FDA-approved drugs for drug repositioning and of natural compound datasets from literature mining and the ZINC database to select compounds interacting with SARS-CoV-2 target proteins (spike protein, nucleocapsid protein, and 2′-o-ribose methyltransferase). Supported by…
Combining multiple hypothesis testing with machine learning increases the statistical power of genome-wide association studies
2016
Mieth, Bettina et al.
LEGO-based generalized set of two linear algebraic 3D bio-macro-molecular descriptors: Theory and validation by QSARs
2019
Abstract Novel 3D protein descriptors based on bilinear, quadratic and linear algebraic maps in R n are proposed. The latter employs the kth 2-tuple (dis) similarity matrix to codify information related to covalent and non-covalent interactions in these biopolymers. The calculation of the inter-amino acid distances is generalized by using several dis-similarity coefficients, where normalization procedures based on the simple stochastic and mutual probability schemes are applied. A new local-fragment approach based on amino acid-types and amino acid-groups is proposed to characterize regions of interest in proteins. Topological and geometric macromolecular cutoffs are defined using local and…
A detailed experimental study of a DNA computer with two endonucleases
2017
Abstract Great advances in biotechnology have allowed the construction of a computer from DNA. One of the proposed solutions is a biomolecular finite automaton, a simple two-state DNA computer without memory, which was presented by Ehud Shapiro’s group at the Weizmann Institute of Science. The main problem with this computer, in which biomolecules carry out logical operations, is its complexity – increasing the number of states of biomolecular automata. In this study, we constructed (in laboratory conditions) a six-state DNA computer that uses two endonucleases (e.g. AcuI and BbvI) and a ligase. We have presented a detailed experimental verification of its feasibility. We described the effe…
Biomolecular computers with multiple restriction enzymes
2017
Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton t…
A Basic Architecture of an Autonomous Adaptive System With Conscious-Like Function for a Humanoid Robot.
2018
In developing a humanoid robot, there are two major objectives. One is developing a physical robot having body, hands, and feet resembling those of human beings and being able to similarly control them. The other is to develop a control system that works similarly to our brain, to feel, think, act, and learn like ours. In this article, an architecture of a control system with a brain-oriented logical structure for the second objective is proposed. The proposed system autonomously adapts to the environment and implements a clearly defined “consciousness” function, through which both habitual behavior and goal-directed behavior are realized. Consciousness is regarded as a function for effecti…
Genome-wide association meta-analysis for early age-related macular degeneration highlights novel loci and insights for advanced disease
2020
Abstract Background Advanced age-related macular degeneration (AMD) is a leading cause of blindness. While around half of the genetic contribution to advanced AMD has been uncovered, little is known about the genetic architecture of early AMD. Methods To identify genetic factors for early AMD, we conducted a genome-wide association study (GWAS) meta-analysis (14,034 cases, 91,214 controls, 11 sources of data including the International AMD Genomics Consortium, IAMDGC, and UK Biobank, UKBB). We ascertained early AMD via color fundus photographs by manual grading for 10 sources and via an automated machine learning approach for > 170,000 photographs from UKBB. We searched for early AMD loc…
Paving the way for synthetic biology-based bioremediation in Europe
2009
Synthetic biology (SB) has a dual definition. It is both the design and construction of new biological parts, devices and systems, and also the re‐design of existing, natural systems for useful purposes. The latter field is maybe one of the major challenges within this discipline, since the promising prospect that biological systems may be used as biomachines will certainly be exploited in the near future. Synthetic biology has challenging conceptual possibilities (Moya et al., 2009a) and impressive progress has already been made in biotechnology following SB approaches (de Lorenzo and Danchin, 2008). Much more is expected in the near future from current efforts aiming to make synthetic gen…
Defining classifier regions for WSD ensembles using word space features
2006
Based on recent evaluation of word sense disambiguation (WSD) systems [10], disambiguation methods have reached a standstill. In [10] we showed that it is possible to predict the best system for target word using word features and that using this 'optimal ensembling method' more accurate WSD ensembles can be built (3-5% over Senseval state of the art systems with the same amount of possible potential remaining). In the interest of developing if more accurate ensembles, w e here define the strong regions for three popular and effective classifiers used for WSD task (Naive Bayes – NB, Support Vector Machine – SVM, Decision Rules – D) using word features (word grain, amount of positive and neg…