Search results for " material"
showing 10 items of 17428 documents
Rapid evaluation of notch stress intensity factors using the peak stress method with 3D tetrahedral finite element models: Comparison of commercial c…
2022
The peak stress method (PSM) allows a rapid application of the notch stress intensity factor (NSIF) approach to the fatigue life assessment of welded structures, by employing the linear elastic peak stresses evaluated by FE analyses with coarse meshes. Because of the widespread adoption of 3D modeling of large and complex structures in the industry, the PSM has recently been boosted by including four-node and ten-node tetrahedral elements of Ansys FE software, which allows to discretize complex geometries. In this paper, a Round Robin among eleven Italian Universities has been performed to calibrate the PSM with seven different commercial FE software packages. Several 3D mode I, II and III …
Phosphorous doping and drawing effects on the Raman spectroscopic properties of O=P bond in silica-based fiber and preform.
2012
International audience; We report an experimental study of the doping and drawing effects on the Raman activities of phosphorus (P)-doped silica-based optical fiber and its related preform. Our data reveal a high sensitivity level in the full width at half maximum value of the 1330 cm−1 (O = P) Raman band to the P-doping level. Its increase with the P doping level does not clash with an increase in the disorder of the O = P surrendering matrix. In addition, we observe that in the central core region of the sample (higher doping level), the drawing process decreases the relative band amplitude. We tentatively suggest that this phenomenon is due to the change in the first derivate of the bond…
Structure, morphology and photoluminescence emissions of ZnMoO4: RE 3+=Tb3+ - Tm3+ - X Eu3+ (x = 1, 1.5, 2, 2.5 and 3 mol%) particles obtained by the…
2018
Made available in DSpace on 2018-12-11T17:36:34Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-06-25 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Ministerio de Economía y Competitividad ZnMoO4 and ZnMoO4: RE3+ = 1% Tb3+, 1% Tm3+, x Eu3+ (x = 1, 1.5, 2, 2.5 and 3 mol%) particles were prepared by a sonochemical method. The influence of the dopant content on photoluminescent behavior was investigated. The X-ray diffraction results confirmed the formation of the α-ZnMoO4 phase with a triclinic crystalline structure. The influence of th…
Remnants of Anderson localization in prethermalization induced by white noise
2017
We study the non-equilibrium evolution of a one-dimensional quantum Ising chain with spatially disordered, time-dependent, transverse fields characterised by white noise correlation dynamics. We establish pre-thermalization in this model, showing that the quench dynamics of the on-site transverse magnetisation first approaches a metastable state unaffected by noise fluctuations, and then relaxes exponentially fast towards an infinite temperature state as a result of the noise. We also consider energy transport in the model, starting from an inhomogeneous state with two domain walls which separate regions characterised by spins with opposite transverse magnetization. We observe at intermedia…
Entanglement entropy in a periodically driven quantum Ising chain
2016
We numerically study the dynamics of entanglement entropy, induced by an oscillating time periodic driving of the transverse field, h(t), of a one-dimensional quantum Ising chain. We consider several realizations of h(t), and we find a number of results in analogy with entanglement entropy dynamics induced by a sudden quantum quench. After short-time relaxation, the dynamics of entanglement entropy synchronises with h(t), displaying an oscillatory behaviour at the frequency of the driving. Synchronisation in the dynamics of entanglement entropy, is spoiled by the appearance of quasi-revivals which fade out in the thermodynamic limit, and which we interpret using a quasi-particle picture ada…
Color Sensitive Response of Graphene/Graphene Quantum Dot Phototransistors
2019
We present the fabrication and characterization of all-carbon phototransistors made of graphene three terminal devices, coated with atomically precise graphene quantum dots (GQD). Chemically synthesized GQDs are the light absorbing materials, while the underlying chemical vapor deposition (CVD)-grown graphene layer acts as the charge transporting channel. We investigated three types of GQDs with different sizes and edge structures, having distinct and characteristic optical absorption in the UV–vis range. The photoresponsivity exceeds 106 A/W for vanishingly small incident power (<10–12 W), comparing well with state of the art sensitized graphene photodetectors. More importantly, the photor…
High-pressure characterization of multifunctional CrVO4
2020
[EN] The structural stability and physical properties of CrVO(4)under compression were studied by x-ray diffraction, Raman spectroscopy, optical absorption, resistivity measurements, andab initiocalculations up to 10 GPa. High-pressure x-ray diffraction and Raman measurements show that CrVO(4)undergoes a phase transition from the ambient pressure orthorhombic CrVO4-type structure (Cmcm space group, phase III) to the high-pressure monoclinic CrVO4-V phase, which is proposed to be isomorphic to the wolframite structure. Such a phase transition (CrVO4-type -> wolframite), driven by pressure, also was previously observed in indium vanadate. The crystal structure of both phases and the pressure …
Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers
2020
We report on spin transport in state-of-the-art epitaxial monolayer graphene based 2D-magnetic tunnel junctions (2D-MTJs). In our measurements, supported by ab-initio calculations, the strength of interaction between ferromagnetic electrodes and graphene monolayers is shown to fundamentally control the resulting spin signal. In particular, by switching the graphene/ferromagnet interaction, spin transport reveals magneto-resistance signal MR > 80% in junctions with low resistance × area products. Descriptions based only on a simple K-point filtering picture (i.e. MR increase with the number of layers) are not sufficient to predict the behavior of our devices. We emphasize that hybridization …
Dynamical learning of a photonics quantum-state engineering process
2021
Abstract. Experimental engineering of high-dimensional quantum states is a crucial task for several quantum information protocols. However, a high degree of precision in the characterization of the noisy experimental apparatus is required to apply existing quantum-state engineering protocols. This is often lacking in practical scenarios, affecting the quality of the engineered states. We implement, experimentally, an automated adaptive optimization protocol to engineer photonic orbital angular momentum (OAM) states. The protocol, given a target output state, performs an online estimation of the quality of the currently produced states, relying on output measurement statistics, and determine…
The 3D structure of fabric and its relationship to liquid and vapor transport
2004
Polymeric carrier fabrics are commonly used in many industrial processes including manufacture of paper and board. Apart from acting as a carrier for the compressible porous material during the manufacturing process, the synthetic woven fabrics comprising mainly of poly ethylene terypthalate (PET) yarns, impart valuable product attributes, i.e. softness, bulk, absorbency, etc. in consumer products. The three-dimensional structure of the fabrics plays a critical role in deciding the manufacturing and energy efficiency as well as product end-use properties. X-ray micro computed tomography (X-CT) provides a non-intrusive technique to visualize and analyze the three-dimensional structure of por…