Search results for " material"

showing 10 items of 17428 documents

Induced crystallographic changes in Cd1−xZnxO films grown on r-sapphire by AP-MOCVD: the effects of the Zn content when x ≤ 0.5

2020

High-resolution X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques were used to investigate, as a function of the nominal Zn content in the range of 0–50%, the out-of-plane and in-plane crystallographic characteristics of Cd1−xZnxO films grown on r-plane sapphire substrates via atmospheric pressure metal–organic chemical vapor deposition. The study is conducted to search for knowledge relating to the structural details during the transition process from a rock-salt to a wurtzite structure as the Zn content increases in this CdO–ZnO system. It has been found that it is possible to obtain films exhibiting a single (001) cubic orientation with good …

010302 applied physicsMaterials scienceScanning electron microscope02 engineering and technologyGeneral ChemistryChemical vapor deposition021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCrystallographyTransmission electron microscopy0103 physical sciencesSapphireGeneral Materials ScienceOrthorhombic crystal systemCrystalliteMetalorganic vapour phase epitaxy0210 nano-technologyWurtzite crystal structureCrystEngComm
researchProduct

Reactive Sintering of molybdenum disilicide by Spark Plasma Sintering from mechanically activated powder mixtures: Processing parameters and properti…

2008

Abstract Dense molybdenum disilicide with a nano-organized microstructure was synthesized by mechanical activation, by producing nanostructured agglomerates of a 1:2 mixture of Mo and Si, followed by the synthesis/consolidation in one step using SPS technology. In order to synthesize a dense molybdenum disilicide with a perfectly controlled microstructure, an investigation of the influence of Spark Plasma Sintering processing parameters (temperature, heating rate, mechanical pressure and holding time) on the chemical composition and the microstructure characteristics has been performed. The present work shows also that the so-obtained materials present better oxidation resistance in compari…

010302 applied physicsMaterials scienceScanning electron microscopeMechanical EngineeringMetallurgyMetals and AlloysMolybdenum disilicideSpark plasma sinteringSintering02 engineering and technology[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyMicrostructure01 natural scienceschemistry.chemical_compoundchemistryMechanics of MaterialsAgglomerate[ CHIM.MATE ] Chemical Sciences/Material chemistry0103 physical sciencesOxidizing agentVickers hardness testMaterials Chemistry0210 nano-technologyComputingMilieux_MISCELLANEOUS
researchProduct

Evaluation of nano/submicro pores in suspension plasma sprayed YSZ coatings

2019

Abstract Nano-submicro pores could considerably influence the coating performances and thus should be properly designed for the intended applications. However, it is challenging to characterize accurately such small pores in coatings. In this study, YSZ coatings were firstly manufactured by suspension plasma spray (SPS) and the nano-submicro pores in as-prepared coatings were investigated using Ultra-small-angle X-ray scattering (USAXS). Afterwards, a multivariate analysis on the effect of five different process parameters was carried out. The two main results showed that: 1) the nano-submicro pores content in coatings has a negative correlation with suspension mass load and powder size, an…

010302 applied physicsMaterials scienceScatteringSintering02 engineering and technologySurfaces and InterfacesGeneral ChemistrySurface finishengineering.materialCondensed Matter Physics01 natural sciencesSurfaces Coatings and Films[SPI]Engineering Sciences [physics]020303 mechanical engineering & transports0203 mechanical engineeringCoating0103 physical sciencesNano-Materials ChemistryengineeringSuspension plasma sprayComposite materialSuspension (vehicle)Yttria-stabilized zirconiaSurface and Coatings Technology
researchProduct

HCl gas gettering of low-cost silicon

2013

HCl gas gettering is a cheap and simple technique to reduce transition metal concentrations in silicon. It is attractive especially for low-cost silicon materials like upgraded metallurgical grade (UMG) silicon, which usually contain 3d transition metals in high concentrations. Etching of silicon by HCl gas occurs during HCl gas gettering above a certain onset temperature. The etching rate as well as the gettering efficiency was experimentally determined as a function of the gettering temperature, using UMG silicon wafers. The activation energy of the etching reaction by HCl gas was calculated from the obtained data. The gettering efficiency was determined by analyzing Ni as a representativ…

010302 applied physicsMaterials scienceSiliconEtching rateInorganic chemistrychemistry.chemical_element02 engineering and technologySurfaces and InterfacesActivation energy021001 nanoscience & nanotechnologyCondensed Matter Physics7. Clean energy01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryTransition metalGetterEtching (microfabrication)0103 physical sciencesMaterials ChemistryWaferElectrical and Electronic Engineering0210 nano-technologyInductively coupled plasma mass spectrometryphysica status solidi (a)
researchProduct

Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon

2017

Abstract Simulations of 3D anisotropic stress are carried out in and oriented Si crystals grown by FZ and CZ processes for different diameters, growth rates and process stages. Temperature dependent elastic constants and thermal expansion coefficients are used in the FE simulations. The von Mises stress at the triple point line is ~5–11% higher in crystals compared to crystals. The process parameters have a larger effect on the von Mises stress than the crystal orientation. Generally, the crystal has a higher azimuthal variation of stress along the triple point line (~8%) than the crystal (~2%). The presence of a crystal ridge increases the stress beside the ridge and decreases it on the ri…

010302 applied physicsMaterials scienceSiliconTriple pointPhysics::Opticschemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsRidge (differential geometry)01 natural sciencesThermal expansionInorganic ChemistryStress (mechanics)CrystalCrystallographychemistryCondensed Matter::Superconductivity0103 physical sciencesMaterials Chemistryvon Mises yield criterionComposite material0210 nano-technologyLine (formation)Journal of Crystal Growth
researchProduct

Choice of the detectors for light impurities plasma studies at W7-X using ‘CO Monitor’ system

2019

Abstarct The ‘CO Monitor’ is a new spectrometer system dedicated for the continuous measurements of line intensities of carbon, oxygen, boron and nitrogen at the fusion plasma experiment Wendelstein 7-X (W7-X). Its main purpose is to deliver constant information about indicated elements with high time resolution (better than 1 ms), but low spatial resolution since the line shapes are not going to be investigated. The system consists of four independent channels, each equipped with dispersive element dedicated for measurement of selected line of interest. In order to perform the highest efficiency of the ‘CO Monitor’ system, it is essential to choose the proper detector type for this task. T…

010302 applied physicsMaterials scienceSpectrometerbusiness.industryMechanical EngineeringDetectorPhase (waves)PlasmaElectronXUVDetectorsWendelstein 7-XStellarator01 natural sciencesLine (electrical engineering)010305 fluids & plasmasOpticsNuclear Energy and Engineering0103 physical sciencesGeneral Materials SciencebusinessSensitivity (electronics)Image resolutionCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Gel combustion synthesis and magnetic properties of CoFe2O4, ZnFe2O4, and MgFe2O4 using 6-aminohexanoic acid as a new fuel

2020

Abstract For the first time, 6-aminohexanoic acid is used as an alternative fuel in the synthesis of the spinel ferrites with compositions CoFe2O4, ZnFe2O4 and MgFe2O4 using gel combustion synthesis with different oxidizer-to-fuel (O/F) ratios. The gel precursors were studied by differential thermal analysis and thermogravimetry (DTA/TG), which showed that the ignition temperature depends on the gel precursor, being around 230 °C, 130 °C and 275 °C for CoFe2O4, ZnFe2O4, and MgFe2O4, respectively. These results showed than the 6-aminohexanoic acid has an ignition temperature lower than the urea and the citric acid when were used in the synthesis of the spinel ferrites by gel combustion. More…

010302 applied physicsMaterials scienceSpinelAnalytical chemistryAutoignition temperature02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyCondensed Matter PhysicsCombustion01 natural sciencesElectronic Optical and Magnetic MaterialsAdiabatic flame temperatureThermogravimetryZinc ferriteDifferential thermal analysis0103 physical sciencesengineeringFourier transform infrared spectroscopy0210 nano-technologyJournal of Magnetism and Magnetic Materials
researchProduct

Half-Heusler compounds: novel materials for energy and spintronic applications

2012

Half-Heusler compounds are an impressive class of materials with a huge potential for different applications such as future energy applications and for spintronics. The semiconducting Heusler compounds can be identified by the number of valence electrons. The band gap can be tuned between 0 and 4 eV by the electronegativity difference of the constituents. Magnetism can be introduced in these compounds by using rare-earth elements, manganese or ‘electron’ doping. Thus, there is a great interest in the fields of thermoelectrics, solar cells and diluted magnetic semiconductors. The combination of different properties such as superconductivity and topological edge states leads to new multifunct…

010302 applied physicsMaterials scienceSpintronicsCondensed Matter::OtherBand gapMagnetismNanotechnology02 engineering and technologyNarrow-gap semiconductorMagnetic semiconductor021001 nanoscience & nanotechnologyCondensed Matter PhysicsThermoelectric materials01 natural sciences7. Clean energyElectronic Optical and Magnetic MaterialsElectronegativityCondensed Matter::Materials Science0103 physical sciencesMaterials ChemistryCondensed Matter::Strongly Correlated ElectronsElectrical and Electronic Engineering0210 nano-technologyValence electronSemiconductor Science and Technology
researchProduct

X-ray diffraction Warren–Averbach mullite analysis in whiteware porcelains: influence of kaolin raw material

2018

ABSTRACTCompositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of ‘higher-crystallinity’ kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren–Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temper…

010302 applied physicsMaterials scienceStoichiometric compositionMullite02 engineering and technologyRaw material021001 nanoscience & nanotechnology01 natural sciencesCrystalGeochemistry and Petrology0103 physical sciencesX-ray crystallographyKaoliniteCrystalliteThickeningComposite material0210 nano-technologyClay Minerals
researchProduct

Effect of oxidation post treatments on TiO2 coating manufactured using reactive very low-pressure plasma spraying (R-VLPPS)

2020

Abstract TiO2 coatings manufactured using reactive very low-pressure plasma spraying (R-VLPPS) were analyzed in different regions related to their position compared to the plasma flame. For that, a screen was used in order to hide an area of the substrate from the direct plasma flux. The coating morphology changed from quasi lamellar structure to highly vapor structure and coatings exhibited obvious modifications in terms of phases and mechanical properties. The effect of oxidation post treatment on the as sprayed coating was then studied by selecting two methods: in situ oxidation post treatment and classical thermal treatment. The two post treatments provided an increase of the main rutil…

010302 applied physicsMaterials scienceSubstrate (chemistry)02 engineering and technologySurfaces and InterfacesGeneral ChemistryPlasmaThermal treatmentengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and Films[SPI]Engineering Sciences [physics]CoatingRutilePhase (matter)0103 physical sciencesMaterials ChemistryengineeringLamellar structureComposite material0210 nano-technologyPorositySurface and Coatings Technology
researchProduct