6533b85cfe1ef96bd12bc798

RESEARCH PRODUCT

Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon

I. DrikisJuris SennikovsMatiss PlateJanis Virbulis

subject

010302 applied physicsMaterials scienceSiliconTriple pointPhysics::Opticschemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsRidge (differential geometry)01 natural sciencesThermal expansionInorganic ChemistryStress (mechanics)CrystalCrystallographychemistryCondensed Matter::Superconductivity0103 physical sciencesMaterials Chemistryvon Mises yield criterionComposite material0210 nano-technologyLine (formation)

description

Abstract Simulations of 3D anisotropic stress are carried out in and oriented Si crystals grown by FZ and CZ processes for different diameters, growth rates and process stages. Temperature dependent elastic constants and thermal expansion coefficients are used in the FE simulations. The von Mises stress at the triple point line is ~5–11% higher in crystals compared to crystals. The process parameters have a larger effect on the von Mises stress than the crystal orientation. Generally, the crystal has a higher azimuthal variation of stress along the triple point line (~8%) than the crystal (~2%). The presence of a crystal ridge increases the stress beside the ridge and decreases it on the ridge compared with the round crystal.

https://doi.org/10.1016/j.jcrysgro.2016.12.074