Search results for " matter"

showing 10 items of 15893 documents

Superconductivity near a magnetic domain wall

2018

We study the equilibrium properties of a ferromagnetic insulator/superconductor structure near a magnetic domain wall. We show how the domain wall size is affected by the superconductivity in such structures. Moreover, we calculate several physical quantities altered due to the magnetic domain wall, such as the spin current density and local density of states, as well as the resulting tunneling conductance into a structure with a magnetic domain wall.

---Materials sciencesuprajohtavuusMagnetic domainFOS: Physical sciencesInsulator (electricity)02 engineering and technologymagnetic fieldsSpin currentmagneettikentätsuperconductors01 natural sciencessuprajohteetSuperconductivity (cond-mat.supr-con)Physics::Fluid DynamicsCondensed Matter::Superconductivity0103 physical sciences010306 general physicsPhysical quantitySuperconductivityTunneling conductanceLocal density of statesta114Condensed matter physicsCondensed Matter - Superconductivitysuperconductivity021001 nanoscience & nanotechnologyFerromagnetism0210 nano-technologyPhysical Review B
researchProduct

Non-Markovian Dynamics of a Qubit Due to Single-Photon Scattering in a Waveguide

2018

We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to discuss the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit …

---PhotonWave packetGeneral Physics and AstronomyFOS: Physical sciencesWaveguide QED; open quantum systems; non-Markovianity; quantum optics01 natural sciences010305 fluids & plasmasQuantum mechanics0103 physical sciencesMaster equationMesoscale and Nanoscale Physics (cond-mat.mes-hall)Waveguide (acoustics)quantum optics010306 general physicsQuantumPhysicsQuantum opticsopen quantum systemQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringnon-MarkovianityQubitWaveguide QEDQuantum Physics (quant-ph)Physics - OpticsOptics (physics.optics)
researchProduct

Coexistence of superconductivity and spin-splitting fields in superconductor/ferromagnetic insulator bilayers of arbitrary thickness

2021

Ferromagnetic insulators (FI) can induce a strong exchange field in an adjacent superconductor (S) via the magnetic proximity effect. This manifests as spin splitting of the BCS density of states of the superconductor, an important ingredient for numerous superconducting spintronics applications and the realization of Majorana fermions. A crucial parameter that determines the magnitude of the induced spin splitting in FI/S bilayers is the thickness of the S layer d: In very thin samples, the superconductivity is suppressed by the strong magnetism. By contrast, in very thick samples, the spin splitting is absent at distances away from the interface. In this work, we calculate the density of …

---suprajohtavuusnanoelektroniikkaCondensed Matter - SuperconductivityEuropean researchOdd Triplet SuperconductivityFOS: Physical sciencesequation02 engineering and technologyPublic administration021001 nanoscience & nanotechnology01 natural sciences3. Good healthsuprajohteetSuperconductivity (cond-mat.supr-con)Spin splittingPolitical scienceCondensed Matter::Superconductivity0103 physical sciencestransport010306 general physics0210 nano-technologyEuS
researchProduct

High-pressure characterization of multifunctional CrVO4

2020

[EN] The structural stability and physical properties of CrVO(4)under compression were studied by x-ray diffraction, Raman spectroscopy, optical absorption, resistivity measurements, andab initiocalculations up to 10 GPa. High-pressure x-ray diffraction and Raman measurements show that CrVO(4)undergoes a phase transition from the ambient pressure orthorhombic CrVO4-type structure (Cmcm space group, phase III) to the high-pressure monoclinic CrVO4-V phase, which is proposed to be isomorphic to the wolframite structure. Such a phase transition (CrVO4-type -> wolframite), driven by pressure, also was previously observed in indium vanadate. The crystal structure of both phases and the pressure …

-typeoptical absorptionCondensed Matter - Materials Sciencehigh-pressureCrVOOther Physics TopicsHigh-pressureOptical absorption4Settore ING-IND/22 - Scienza e Tecnologia dei MaterialiMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesAnnan fysikCrVO4-typeX-ray diffractionx-ray diffractionRamanspectroscopyphase transitionFISICA APLICADARaman spectroscopyCrVO; 4; -type; high-pressure; optical absorption; phase transition; Raman spectroscopy; X-ray diffractionPhase transition
researchProduct

Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers

2020

We report on spin transport in state-of-the-art epitaxial monolayer graphene based 2D-magnetic tunnel junctions (2D-MTJs). In our measurements, supported by ab-initio calculations, the strength of interaction between ferromagnetic electrodes and graphene monolayers is shown to fundamentally control the resulting spin signal. In particular, by switching the graphene/ferromagnet interaction, spin transport reveals magneto-resistance signal MR > 80% in junctions with low resistance × area products. Descriptions based only on a simple K-point filtering picture (i.e. MR increase with the number of layers) are not sufficient to predict the behavior of our devices. We emphasize that hybridization …

/120Materials scienceScienceGeneral Physics and AstronomyGenetics and Molecular Biology02 engineering and technologyMaterials science Nanoscience and technology010402 general chemistry01 natural sciencesSignalArticleGeneral Biochemistry Genetics and Molecular Biologylaw.inventionEngineeringNanoscience and technologylawMonolayerProximity effect (superconductivity)/128/639/925[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]lcsh:ScienceSpin-½[PHYS]Physics [physics]/639/166/639/301MultidisciplinarySpintronicsCondensed matter physicsNanotecnologiaGraphenePhysicsQ/639/766General ChemistryCiència dels materials5104 Condensed Matter Physics021001 nanoscience & nanotechnologyMaterials science0104 chemical sciencesFerromagnetismGeneral BiochemistryDensity of stateslcsh:QCondensed Matter::Strongly Correlated Electrons/1190210 nano-technology51 Physical SciencesNature Communications
researchProduct

Angular dependence of the domain wall depinning field in the sensors with segmented corners

2017

Rotating domain wall based sensors that have recently been developed are based on a segmented looping geometry. In order to determine the crucial pinning of domain walls in this special geometry, we investigate the depinning under different angles of an applied magnetic field and obtain the angular dependence of the depinning field of the domain walls. Due to the geometry, the depinning field not only exhibits a 180$^\circ$-periodicity but a more complex dependence on the angle. The depinning field depends on two different angles associated with the initial state and the segmented geometry of the corner. We find that depending on the angle of the applied field two different switching proces…

010302 applied physics0301 basic medicineCondensed Matter - Materials ScienceHistoryMaterials scienceField (physics)Condensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences01 natural sciencesComputer Science ApplicationsEducationMagnetic field03 medical and health sciences030104 developmental biologyDomain wall (magnetism)0103 physical sciencesAngular dependence
researchProduct

Controlled turbulence regime of electron cyclotron resonance ion source for improved multicharged ion performance

2020

Fundamental studies of excitation and non-linear evolution of kinetic instabilities of strongly nonequlibrium hot plasmas confined in open magnetic traps suggest new opportunities for fine-tuning of conventional electron cyclotron resonance (ECR) ion sources. These devices are widely used for the production of particle beams of high charge state ions. Operating the ion source in controlled turbulence regime allows increasing the absorbed power density and therefore the volumetric plasma energy content in the dense part of the discharge surrounded by the ECR surface, which leads to enhanced beam currents of high charge state ions. We report experiments at the ECR ion source at the JYFL accel…

010302 applied physicsAccelerator Physics (physics.acc-ph)Materials scienceAcoustics and UltrasonicsIon beamFOS: Physical sciencesPlasmaCondensed Matter PhysicsKinetic energy7. Clean energy01 natural sciencesElectron cyclotron resonanceIon sourcePhysics - Plasma Physics010305 fluids & plasmasSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonPlasma Physics (physics.plasm-ph)Physics::Plasma Physics0103 physical sciencesPhysics - Accelerator PhysicsAtomic physicsExcitationBeam (structure)
researchProduct

Effect of space charge on the negative oxygen flux during reactive sputtering

2017

Negative ions often play a distinctive role in the phase formation during reactive sputter deposition. The path of these high energetic ions is often assumed to be straight. In this paper, it is shown that in the context of reactive magnetron sputtering space charge effects are decisive for the energetic negative ion trajectories. To investigate the effect of space charge spreading, reactive magnetron sputter experiments were performed in compound mode with target materials that are expected to have a high secondary ion emission yield (MgO and CeO2). By the combination of energy flux measurements, and simulations, a quantitative value for the negative oxygen ion yield can be derived.

010302 applied physicsAcoustics and UltrasonicsChemistryEnergy fluxContext (language use)02 engineering and technologySputter deposition021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSpace chargeMolecular physicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonCondensed Matter::Materials SciencePhysics::Plasma PhysicsSputteringYield (chemistry)0103 physical sciencesOxygen fluxAtomic physics0210 nano-technologyJournal of Physics D: Applied Physics
researchProduct

Determination of an empirical law of aluminium and magnesium alloys absorption coefficient during Nd :YAG laser interaction

2007

International audience; Welding laser modelling requires knowledge about relative changes of many thermo-physical parameters involved in the interaction. The absorptivity of the material is one of the most important. In this study, experimental measurements of absorptivity with an integrating sphere on two alloys (aluminium and magnesium) were made. These results were compared with an analytical calculation that takes into account the trapping of the beam by multiple reflections inside the keyhole. Based on a statistical method, an empirical law is proposed connecting absorptivity with the peak power of the laser and the duration of interaction. During the interaction, two distinct phenomen…

010302 applied physicsAcoustics and UltrasonicsChemistry[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]chemistry.chemical_element02 engineering and technologyWeldingMolar absorptivity021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaser01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionIntegrating spherelawAluminiumAttenuation coefficientNd:YAG laser0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyBeam (structure)
researchProduct

Evolution of the microstructure of sputter deposited TaAlON thin films with increasing oxygen partial pressure

2021

Abstract Recently, quaternary oxynitrides of transition metals and aluminum have attracted increasing interest due to their tunable properties. Within the present work, a series of TaAl(O)N films was sputter deposited using constant nitrogen and varying oxygen partial pressures. The films were grown from single element Ta and Al targets. The deposition parameters were adjusted to obtain a Ta/Al atomic ratio of ~50/50 for the oxygen-free film and were held constant for the following depositions, with the exception of the increasing oxygen partial pressure and compensatory decreasing argon partial pressure. Elastic recoil detection analysis revealed oxygen contents of up to ~26 at.%, while th…

010302 applied physicsArgonMaterials scienceAnalytical chemistrychemistry.chemical_element02 engineering and technologySurfaces and InterfacesGeneral ChemistryPartial pressureNanoindentation021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesOxygenNanocrystalline materialSurfaces Coatings and FilmsElastic recoil detectionchemistry0103 physical sciencesMaterials ChemistryAtomic ratioThin film0210 nano-technologySurface and Coatings Technology
researchProduct