Search results for " metabolism"

showing 10 items of 4843 documents

Succession in ant communities (Hymenoptera: Formicidae) in deciduous forest clear-cuts - an Eastern European case study

2017

Clear-cutting, the main method of harvesting in many forests in the world, causes a series of dramatic environmental changes to the forest habitat and removes habitat resources for arboreal and epigeal species. It results in considerable changes in the composition of both plant and animal communities. Ants have many critical roles in the maintenance and functioning of forest ecosystems. Therefore, the response of ants to clear-cutting and the time it takes for an ant community to recover after clear-cutting are important indicators of the effect of this harvesting technique on the forest ecosystem. We investigated ground-dwelling ant communities during secondary succession of deciduous fore…

0106 biological sciencesClearcuttingdeciduous forestsSecondary successionChronosequenceclear-cuttingantsEcological successionBiology010603 evolutionary biology01 natural sciencesForest ecologypitfall trapsAgroforestryEcologyfungifood and beveragessecondary successionbiochemical phenomena metabolism and nutritionformicidaeEastern european010602 entomologyQL1-991HabitatInsect SciencehymenopteraSpecies richnesscommunity structureZoologyEuropean Journal of Entomology
researchProduct

Ocean Acidification and the Loss of Phenolic Substances in Marine Plants

2012

Rising atmospheric CO(2) often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO(2) availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO(2) enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO(2) …

0106 biological sciencesCymodocea nodosaved/biology.organism_classification_rank.speciesCarbonatesSecondary MetabolismMarine and Aquatic Scienceslcsh:MedicinePlant Science01 natural scienceschemistry.chemical_compoundGlobal Change Ecologylcsh:SciencePhysiological EcologyMultidisciplinaryAlismatalesbiologyEcologyEcologyPlant BiochemistryMarine EcologyOcean acidificationPotamogetonaceaeHydrogen-Ion ConcentrationSeagrassProductivity (ecology)ItalyCarbon dioxideCoastal EcologyResearch ArticleOceans and SeasMarine Biology010603 evolutionary biologyStatistics NonparametricHydrothermal VentsPhenolsPlant-Environment InteractionsTerrestrial plantSeawater14. Life underwaterocean acidification climate change mediterranean sea seagrassBiologyAnalysis of VarianceChemical EcologyMarylandved/biology010604 marine biology & hydrobiologyPlant Ecologyfungilcsh:R15. Life on landCarbon Dioxidebiology.organism_classificationSalinitychemistry13. Climate actionEarth Scienceslcsh:QRuppia maritima
researchProduct

2006

Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect.

0106 biological sciencesGenetics0303 health sciencesAphidExpressed sequence tagbiologyIn silicomedia_common.quotation_subjectfungifood and beveragesInsectbiochemical phenomena metabolism and nutritionbiology.organism_classification01 natural sciencesHemipteraPisumAcyrthosiphon pisum010602 entomology03 medical and health sciencesDrosophila melanogaster030304 developmental biologymedia_commonGenome Biology
researchProduct

Genetic variation in natural populations of the aphid Rhopalosiphum padi as revealed by maternally inherited markers

1996

A survey on 148 clones of the aphid Rhopalosiphum padi from 11 widespread localities has been carried out to study the genetic structure of populations of this species as revealed by mitochondrial DNA restriction site and length polymorphisms as well as by restriction site analysis of a maternally inherited plasmid carried by the aphid eubacterial endosymbiont Buchnera aphidicola. Our results support the existence in the area under study of two main aphid maternal lineages strikingly coincidental with the two main reproductive categories displayed by this species. Those aphid clones possessing an incomplete life cycle that lacks the sexual phase (anholocyclic or androcyclic clones) show mit…

0106 biological sciencesGeneticseducation.field_of_studyAphidMitochondrial DNAPopulationHaplotypebiochemical phenomena metabolism and nutritionBiologybiology.organism_classificationGENETIQUE MITOCHONDRIALE010603 evolutionary biology01 natural sciencesINSECTE010602 entomologyRestriction siteRhopalosiphum padiGenetic variation[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyBuchneraeducationComputingMilieux_MISCELLANEOUSEcology Evolution Behavior and SystematicsMolecular Ecology
researchProduct

The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation

2007

The smallest known eukaryotes, at ≈1-μm diameter, are Ostreococcus tauri and related species of marine phytoplankton. The genome of Ostreococcus lucimarinus has been completed and compared with that of O. tauri . This comparison reveals surprising differences across orthologous chromosomes in the two species from highly syntenic chromosomes in most cases to chromosomes with almost no similarity. Species divergence in these phytoplankton is occurring through multiple mechanisms acting differently on different chromosomes and likely including acquisition of new genes through horizontal gene transfer. We speculate that this latter process may be involved in altering the cell-surface character…

0106 biological sciencesGenome evolutionProtein familyGene Transfer Horizontal[SDV]Life Sciences [q-bio]Molecular Sequence DataBiologyEnvironment01 natural sciencesGenomeChromosomesOstreococcus tauriOstreococcus03 medical and health sciencesChlorophyta[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]SelenoproteinsGeneComputingMilieux_MISCELLANEOUS030304 developmental biologyGeneticsCell Nucleus0303 health sciencesMultidisciplinaryMetal metabolismGenomeVitaminsBiological Sciencesbiology.organism_classificationPlanktonAdaptation PhysiologicalBiological EvolutionEukaryotic CellsMetalsHorizontal gene transfer010606 plant biology & botany
researchProduct

No exception to the rule: Candidatus Portiera aleyrodidarum cell wall revisited

2014

International audience; Many insect endosymbionts described so far are gram-negative bacteria. Primary endosymbionts are obligatory bacteria usually harboured by insects inside vacuoles in specialized cells called bacteriocytes. This combination produces a typical three-membrane system with one membrane derived from the insect vacuole and the other two from the bacterial gram-negative cell envelope, composed by the cell wall (the outer membrane plus the periplasmic space) and the plasma membrane (the inner membrane). For the last 21 years, the primary endosymbiont of whiteflies 'Candidatus Portiera aleyrodidarum' was considered an exception to this rule. Previous works stated that only two …

0106 biological sciencesGram-negative bacteriacell envelopeCandidatus Carsonella ruddii[SDV]Life Sciences [q-bio]Bemisia tabaci endosymbiont01 natural sciencesMicrobiologyMicrobiologyHemipteraCell membrane03 medical and health sciencesMicroscopy Electron TransmissionCell WallGeneticsmedicineAnimalsInner membraneMolecular Biology030304 developmental biology0303 health sciencesbiologyfungiPeriplasmic spacebiochemical phenomena metabolism and nutritionbiology.organism_classificationHalomonadaceaemedicine.anatomical_structureGenes Bacterialendosymbiont membranesCandidatusbacteriaCell envelopeBacterial outer membrane010606 plant biology & botany
researchProduct

Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci

2015

Background The whitefly Bemisia tabaci is an important agricultural pest with global distribution. This phloem-sap feeder harbors a primary symbiont, “Candidatus Portiera aleyrodidarum”, which compensates for the deficient nutritional composition of its food sources, and a variety of secondary symbionts. Interestingly, all of these secondary symbionts are found in co-localization with the primary symbiont within the same bacteriocytes, which should favor the evolution of strong interactions between symbionts. Results In this paper, we analyzed the genome sequences of the primary symbiont Portiera and of the secondary symbiont Hamiltonella in the B. tabaci Mediterranean (MED) species in orde…

0106 biological sciencesHamiltonellaCandidatus Portiera aleyrodidarum[SDV]Life Sciences [q-bio]Molecular Sequence DataWhiteflyPortiera010603 evolutionary biology01 natural sciencesGenomeHemiptera03 medical and health sciencesMetabolic complementationSymbiosisEnterobacteriaceaeBotanyGeneticsAnimalsAmino AcidsSymbiosisIn Situ Hybridization Fluorescence030304 developmental biology2. Zero hungerGenetics0303 health sciencesEndosymbiontGenomebiologyfungifood and beveragesHigh-Throughput Nucleotide SequencingDNASequence Analysis DNAVitaminsbiochemical phenomena metabolism and nutritionbiology.organism_classificationEnterobacteriaceaeHemipteraWhiteflyComplementationHalomonadaceaeGlobal distribution[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]Genome BacterialMetabolic Networks and PathwaysBiotechnologyResearch ArticleBMC Genomics
researchProduct

Retroconversion of docosapentaenoic acid (n-6): an alternative pathway for biosynthesis of arachidonic acid in Daphnia magna.

2013

The aim of this study was to assess metabolic pathways for arachidonic acid (20:4n-6) biosynthesis in Daphnia magna. Neonates of D. magna were maintained on [13C] enriched Scenedesmus obliquus and supplemented with liposomes that contained separate treatments of unlabeled docosapentaenoic acid (22:5n-6), 20:4n-6, linoleic acid (18:2n-6) or oleic acid (18:1n-9). Daphnia in the control treatment, without any supplementary fatty acids (FA) containing only trace amounts of 20:4n-6 (~0.3 % of all FA). As expected, the highest proportion of 20:4n-6 (~6.3 %) was detected in Daphnia that received liposomes supplemented with this FA. Higher availability of 18:2n-6 in the diet increased the proportio…

0106 biological sciencesLinoleic acidDaphnia magna01 natural sciencesBiochemistryDaphnia03 medical and health scienceschemistry.chemical_compoundAnimalsreproductive and urinary physiology030304 developmental biologychemistry.chemical_classification0303 health sciencesArachidonic Acidbiology010604 marine biology & hydrobiologyfungiOrganic ChemistryDocosapentaenoic Acid n-6Cell Biologybiology.organism_classificationLipid MetabolismBiosynthetic PathwaysOleic acidBiochemistrychemistryDaphniaLiposomesFatty Acids UnsaturatedArachidonic acidDocosapentaenoic acidHydrogenationPolyunsaturated fatty acidLipids
researchProduct

The preference and costs of sleeping under light at night in forest and urban great tits

2019

Artificial light at night (ALAN) is an increasing phenomenon associated with worldwide urbanization. In birds, broad-spectrum white ALAN can have disruptive effects on activity patterns, metabolism, stress response and immune function. There has been growing research on whether the use of alternative light spectra can reduce these negative effects, but surprisingly, there has been no study to determine which light spectrum birds prefer. To test such a preference, we gave urban and forest great tits (Parus major) the choice where to roost using pairwise combinations of darkness, white light or green dim light at night (1.5 lux). Birds preferred to sleep under artificial light instead of dar…

0106 biological sciencesMaleLight pollutionForestsartificial light at night01 natural sciencesoxalic acidSleep debtOxalic acidParus majorPasseriformesGeneral Environmental Sciencevuorokausirytmi0303 health sciencesbiologyBehavior Animallight pollutionGeneral MedicinetalitiainenPE&RCSleep in non-human animalsPreferenceCircadian RhythmLight pollutioninternationalMAMMALSDarknessFemalekaupungistuminenGeneral Agricultural and Biological SciencesBEHAVIORenergiankulutus (aineenvaihdunta)ZoologyurbanizationAnimal Breeding and Genomics010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular Biologyuni (lepotila)03 medical and health sciencesBiointeractions and Plant HealthAnimalsCOLORBehaviourFokkerij en GenomicaCircadian rhythmsleepPHYSIOLOGYARTIFICIAL-LIGHTLighting030304 developmental biologyParusWhite (horse)BIRDSGeneral Immunology and MicrobiologyINTENSITYMEMORYUrbanizationPERFORMANCEbiology.organism_classificationvalosaasteEnergy MetabolismEnvironmental PollutionSleepArtificial light at nightALTERS
researchProduct

Introgression of mitochondrial DNA among Myodes voles: consequences for energetics?

2011

Abstract Background Introgression of mitochondrial DNA (mtDNA) is among the most frequently described cases of reticulate evolution. The tendency of mtDNA to cross interspecific barriers is somewhat counter-intuitive considering the key function of enzymes that it encodes in the oxidative-phosphorylation process, which could give rise to hybrid dysfunction. How mtDNA reticulation affects the evolution of metabolic functions is, however, uncertain. Here we investigated how morpho-physiological traits vary in natural populations of a common rodent (the bank vole, Myodes glareolus) and whether this variation could be associated with mtDNA introgression. First, we confirmed that M. glareolus ha…

0106 biological sciencesMaleMitochondrial DNANuclear geneEvolutionIntrogression010603 evolutionary biology01 natural sciencesDNA Mitochondrial03 medical and health sciencesQH359-425AnimalsEcology Evolution Behavior and Systematics030304 developmental biologyGeneticsCell Nucleus0303 health sciencesbiologyCytochrome bArctic RegionsArvicolinaebiology.organism_classificationReticulate evolutionNuclear DNABank volePhenotypeArvicolinaeFemaleBasal MetabolismResearch ArticleBMC evolutionary biology
researchProduct