6533b823fe1ef96bd127f5fa

RESEARCH PRODUCT

Retroconversion of docosapentaenoic acid (n-6): an alternative pathway for biosynthesis of arachidonic acid in Daphnia magna.

Martin J. KainzMichael T. BrettSami J. TaipaleUrsula Strandberg

subject

0106 biological sciencesLinoleic acidDaphnia magna01 natural sciencesBiochemistryDaphnia03 medical and health scienceschemistry.chemical_compoundAnimalsreproductive and urinary physiology030304 developmental biologychemistry.chemical_classification0303 health sciencesArachidonic Acidbiology010604 marine biology & hydrobiologyfungiOrganic ChemistryDocosapentaenoic Acid n-6Cell Biologybiology.organism_classificationLipid MetabolismBiosynthetic PathwaysOleic acidBiochemistrychemistryDaphniaLiposomesFatty Acids UnsaturatedArachidonic acidDocosapentaenoic acidHydrogenationPolyunsaturated fatty acid

description

The aim of this study was to assess metabolic pathways for arachidonic acid (20:4n-6) biosynthesis in Daphnia magna. Neonates of D. magna were maintained on [13C] enriched Scenedesmus obliquus and supplemented with liposomes that contained separate treatments of unlabeled docosapentaenoic acid (22:5n-6), 20:4n-6, linoleic acid (18:2n-6) or oleic acid (18:1n-9). Daphnia in the control treatment, without any supplementary fatty acids (FA) containing only trace amounts of 20:4n-6 (~0.3 % of all FA). As expected, the highest proportion of 20:4n-6 (~6.3 %) was detected in Daphnia that received liposomes supplemented with this FA. Higher availability of 18:2n-6 in the diet increased the proportion of 18:2n-6 in Daphnia, but the proportion of 20:4n-6 was not affected. Daphnia supplemented with 22:5n-6 contained ~3.5 % 20:4n-6 in the lipids and FA specific stable isotope analyses validated that the increase in the proportion of 20:4n-6 was due to retroconversion of unlabeled 22:5n-6. These results suggest that chain shortening of 22:5n-6 is a more efficient pathway to synthesize 20:4n-6 in D. magna than elongation and desaturation of 18:2n-6. These results may at least partially explain the discrepancies noticed between phytoplankton FA composition and the expected FA composition in freshwater cladocerans. Finally, retroconversion of dietary 22:5n-6 to 20:4n-6 indicates Daphnia efficiently retain long chain n-6 FA in lake food webs, which might be important for the nutritional ecology of fish.

10.1007/s11745-014-3902-yhttps://pubmed.ncbi.nlm.nih.gov/24715497