Search results for "Hydrogenation"

showing 10 items of 155 documents

Unsymmetrical Iron P-NH-P' Catalysts for the Asymmetric Pressure Hydrogenation of Aryl Ketones.

2017

R.H.M. thanks NSERC Canada for a Discovery grant and the Canada Council for the Arts for a Killam Fellowship. This work was also made possible by the SCICOMP NMR facilities provided by the Canada Foundation for Innovation, project number 19119, and the Ontario Ministry of Research, Innovation and Science. The Deutscher Akademischer Austauschdienst (DAAD) is thanked for support for A.P. Calculations were performed using the facilities of SHARCNET and Scinet of Compute/Calcul Canada

010405 organic chemistryArylOrganic ChemistryNoyori asymmetric hydrogenationGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesCatalysischemistry.chemical_compoundchemistryOrganic chemistryChristian ministryChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Enhanced NiO Dispersion on a High Surface Area Pillared Heterostructure Covered by Niobium Leads to Optimal Behaviour in the Oxidative Dehydrogenatio…

2020

[EN] A Nb-containing siliceous porous clay heterostructure (PCH) with Nb contents from 0 to 30 wt %) was prepared from a bentonite and used as support in the preparation of supported NiO catalysts with NiO loading from 15 to 80 wt %. Supports and NiO-containing catalysts were characterised by several physicochemical techniques and tested in the oxidative dehydrogenation (ODH) of ethane. The characterisation studies on Nb-containing supports showed the presence of well-anchored Nb(5+)species without the formation of Nb(2)O(5)crystals. High dispersion of nickel oxide with low crystallinity was observed for the Nb-containing PCH supports. In addition, when NiO is supported on these Nb-containi…

010405 organic chemistryChemistryNiobiumOrganic ChemistryNon-blocking I/OSupported catalystsNiobiumchemistry.chemical_elementHeterojunctionGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesNickelNickelPorous heterostructuresPhysical chemistryDehydrogenationDehydrogenationDispersion (chemistry)Chemistry - A European Journal
researchProduct

The history and future challenges associated with the hydrogenation of vinyl fluorides

2018

Abstract Catalytic hydrogenation is one of the most powerful transformations available in synthetic chemistry; there have been three Nobel Laureates rewarded for their work in the field. Despite the advances in substrate scope and the development of enantioselective versions of this transformation, vinyl fluorides remain somewhat underrepresented. Successful hydrogenation of vinyl fluorides can give rise to a fluorine-containing stereocenter, an important feature which has great potential in many areas of chemistry. This review aims to explore the history of vinyl fluorides as substrates in hydrogenation reactions, and to highlight modern day challenges and unresolved issues regarding this …

010405 organic chemistryChemistryOrganic ChemistryEnantioselective synthesisNanotechnology010402 general chemistry01 natural sciencesBiochemistry0104 chemical sciencesStereocenterInorganic ChemistryEnvironmental ChemistryPhysical and Theoretical ChemistryCatalytic hydrogenationJournal of Fluorine Chemistry
researchProduct

Selective Formation of 4,4'-Biphenols by Anodic Dehydrogenative Cross- and Homo-Coupling Reaction.

2019

A simple and selective electrochemical synthesis by dehydrogenative coupling of unprotected 2,6- or 2,5-substituted phenols to the desired 4,4'-biphenols is reported. Using electricity as the oxidizing reagent avoids pre-functionalization of the starting materials, since a selective activation of the substrates takes place. Without the necessity for metal-catalysts or the use of stoichiometric reagents it is an economic and environmentally friendly transformation. The elaborated electrochemical protocol leads to a broad variety of the desired 4,4'-biphenols in a very simplified manner compared to classical approaches. This is particular the case for the cross-coupled products.

010405 organic chemistryChemistryOrganic ChemistryGeneral Chemistry010402 general chemistryElectrochemistry01 natural sciencesEnvironmentally friendlyCombinatorial chemistryCatalysisCoupling reaction0104 chemical sciencesAnodeReagentOxidizing agentDehydrogenationStoichiometryChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

A Decade of Electrochemical Dehydrogenative C,C-Coupling of Aryls.

2019

The importance of sustainable and green synthetic protocols for the synthesis of fine chemicals has rapidly increased during the last decades in an effort to reduce the use of fossil fuels and other finite resources. The replacement of common reagents by electricity provides a cost- and atom-efficient, environmentally friendly, and inherently safe access to novel synthetic routes. The selective formation of carbon-carbon bonds between two distinct substrates is a crucial tool in organic chemistry. This fundamental transformation enables access to a broad variety of complex molecular architectures. In particular, the aryl-aryl bond formation has high significance for the preparation of organ…

010405 organic chemistryChemistrybusiness.industryFossil fuelMolecular ConformationGeneral MedicineGeneral ChemistryElectrochemical Techniques010402 general chemistryElectrochemistry01 natural sciencesCombinatorial chemistryHydrocarbons Aromatic0104 chemical sciencesC c couplingHydrogenationbusinessAccounts of chemical research
researchProduct

A metal-free and regioselective approach to (Z)-β-fluorovinyl sulfones and their chemoselective hydrogenation to β-fluoroalkyl sulfones

2018

Abstract A highly regioselective, metal-free hydrofluorination reaction of alkynyl sulfones was developed using TBAF—one of the cheapest and most commonly available fluoride sources. In addition, the reactivity of the resulting β-fluorovinyl sulfones was studied, focusing on their selective hydrogenation reaction. Both β-fluorovinyl sulfones and their hydrogenation products β-fluoroalkyl sulfones may find applications in medicinal and agrochemical sciences.

010405 organic chemistryOrganic ChemistryRegioselectivity010402 general chemistry01 natural sciencesBiochemistry0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryHydrogenation reactionEnvironmental ChemistryOrganic chemistryReactivity (chemistry)Physical and Theoretical ChemistryFluorideJournal of Fluorine Chemistry
researchProduct

Retroconversion of docosapentaenoic acid (n-6): an alternative pathway for biosynthesis of arachidonic acid in Daphnia magna.

2013

The aim of this study was to assess metabolic pathways for arachidonic acid (20:4n-6) biosynthesis in Daphnia magna. Neonates of D. magna were maintained on [13C] enriched Scenedesmus obliquus and supplemented with liposomes that contained separate treatments of unlabeled docosapentaenoic acid (22:5n-6), 20:4n-6, linoleic acid (18:2n-6) or oleic acid (18:1n-9). Daphnia in the control treatment, without any supplementary fatty acids (FA) containing only trace amounts of 20:4n-6 (~0.3 % of all FA). As expected, the highest proportion of 20:4n-6 (~6.3 %) was detected in Daphnia that received liposomes supplemented with this FA. Higher availability of 18:2n-6 in the diet increased the proportio…

0106 biological sciencesLinoleic acidDaphnia magna01 natural sciencesBiochemistryDaphnia03 medical and health scienceschemistry.chemical_compoundAnimalsreproductive and urinary physiology030304 developmental biologychemistry.chemical_classification0303 health sciencesArachidonic Acidbiology010604 marine biology & hydrobiologyfungiOrganic ChemistryDocosapentaenoic Acid n-6Cell Biologybiology.organism_classificationLipid MetabolismBiosynthetic PathwaysOleic acidBiochemistrychemistryDaphniaLiposomesFatty Acids UnsaturatedArachidonic acidDocosapentaenoic acidHydrogenationPolyunsaturated fatty acidLipids
researchProduct

Biocatalytic hydrogenation of the C=C bond in the enone unit of hydroxylated chalcones-process arising from cyanobacterial adaptations.

2018

To verify the hypothesis that cyanobacteria naturally biosynthesising polyphenolic compounds possess an active enzymatic system that enables them to transform these substances, such an ability of the biocatalytic systems of whole cells of these biota was assessed for the first time. One halophilic strain and seven freshwater strains of cyanobacteria representing four of the five taxonomic orders of Cyanophyta were examined to determine the following: (i) whether they contain polyphenols, including flavonoids; (ii) the resistance of their cultures when suppressed by the presence of exogenous hydroxychalcones—precursors of flavonoid biosynthesis and (iii) whether these photoautotrophs can tra…

0301 basic medicineCyanobacteriaStereochemistryHydroxylated chalconesCyanobacteria01 natural sciencesApplied Microbiology and BiotechnologyHydroxylation03 medical and health scienceschemistry.chemical_compoundChalconesbiology010405 organic chemistryfood and beveragesGeneral MedicineCarbon-13 NMRbiology.organism_classification0104 chemical sciencesRegiospecific hydrogenation030104 developmental biologyFlavonoid biosynthesisApplied Microbial and Cell PhysiologychemistryPolyphenolBiocatalysisProton NMRBiocatalysisHydrogenationEnoneBiotechnologyApplied microbiology and biotechnology
researchProduct

Intermolecular oxidative dehydrogenative 3,3′-coupling of benzo[b]furans and benzo[b]thiophenes promoted by DDQ/H+: total synthesis of shandougenine B

2016

With an excess of a strong acid, 2,3-dichloro-5,6-dicyano-1,4-quinone (DDQ) is shown to promote metal-free intermolecular oxidative dehydrogenative (ODH) 3,3'-coupling of 2-aryl-benzo[b]furans and 2-aryl-benzo[b]thiophenes up to 92% yield as demonstrated with 9 substrates. Based on the analysis of oxidation potentials and molecular orbitals combined with EPR, NMR and UV-Vis observations, the studied reaction is initiated by a DDQ-substrate charge transfer complex and presumably proceeds via oxidation of the substrate into an electrophilic radical cation that further reacts with another molecule of a neutral substrate. The coupling reactivity can easily be predicted from the oxidation potent…

116 Chemical sciencesEFFICIENTfree radicalscoupling reactionsvapaat radikaalit010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistryCoupling reactionoxidative dehydrogenationC BOND FORMATIONSCHOLL REACTIONELECTRON-TRANSFERMolecular orbitalReactivity (chemistry)luonnonaineiden synteesiDIPHOSPHINE LIGANDSta116BASIS-SETSCATALYZED STEREOSELECTIVE REACTIONS010405 organic chemistryChemistryOrganic ChemistrykytkentäreaktiotSubstrate (chemistry)Total synthesishapettava dehydroganaatiolaskennallinen kemiaCharge-transfer complex0104 chemical sciencesRadical ionsynthesis of natural productsACIDElectrophileCATION-RADICALSHETEROCYCLESOrganic Chemistry Frontiers
researchProduct

Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration.

2016

In this work, diclofenac was encapsulated, as sodium salt, in glycerosomes containing 10, 20 or 30% of glycerol in the water phase with the aim to ameliorate its topical efficacy. Taking into account previous findings, glycerosome formulation was modified, in terms of economic suitability, using a cheap and commercially available mixture of hydrogenated soy phosphatidylcholine (P90H). P90H glycerosomes were spherical and multilamellar; photon correlation spectroscopy showed that obtained vesicles were ∼131nm, slightly larger and more polydispersed than those made with dipalmitoylphosphatidylcholine (DPPC) but, surprisingly, they were able to ameliorate the local delivery of diclofenac, whic…

3003GlycerolKeratinocytesDiclofenacSwineSkin Absorptionpig skinPharmaceutical Science02 engineering and technology030226 pharmacology & pharmacyDSC03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDiclofenacDrug Delivery SystemsOrgan Culture TechniquesDynamic light scatteringPhosphatidylcholinemedicineGlycerolAnimalsHumansCells CulturedChromatographyhydrogenated phospholipid vesiclesChemistryVesicle(trans)dermal drug delivery; DSC; hydrogenated phospholipid vesicles; keratinocytes; pig skin; rheology; 3003021001 nanoscience & nanotechnology(trans)dermal drug deliveryDipalmitoylphosphatidylcholineSkin penetrationDrug deliveryPhosphatidylcholinesrheologyHydrogenationSoybeans0210 nano-technologymedicine.drugInternational journal of pharmaceutics
researchProduct