Search results for " nanocomposite"

showing 10 items of 199 documents

The impact of temperature on electrical properties of polymer-based nanocomposites

2020

This work was supported by National Research Foundation of Ukraine, project 2020.02/0217. IK would also like to thank VIAA, State Education Development Agency for Latvian state fellowship. HK would like to thank Ministry of Education and Science of Ukraine, project for young researchers No. 0119U100435. In addition, SP and AAP are thankful for financial support from Latvian Council of Science via grant lzp-2018/2-0083. HK and AAP are grateful for the support from the COST Action CA17126.

010302 applied physicschemistry.chemical_classificationRange (particle radiation)Materials scienceThin layersNanocompositePhysics and Astronomy (miscellaneous)General Physics and Astronomymulti-walled carbon nanotubesPolymerCarbon nanotube7. Clean energy01 natural scienceslaw.inventionpolymer based nanocompositeschemistrylaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Composite material010306 general physicslow-temperature hysteresisLow Temperature Physics
researchProduct

Durability of Biodegradable Polymer Nanocomposites

2021

Biodegradable polymers (BP) are often regarded as the materials of the future, which address the rising environmental concerns. The advancement of biorefineries and sustainable technologies has yielded various BP with excellent properties comparable to commodity plastics. Water resistance, high dimensional stability, processability and excellent physicochemical properties limit the reviewed materials to biodegradable polyesters and modified compositions of starch and cellulose, both known for their abundance and relatively low price. The addition of different nanofillers and preparation of polymer nanocomposites can effectively improve BP with controlled functional properties and change the…

Absorption of waterNanocompositeMaterials sciencePolymers and PlasticsPolymer nanocompositeOrganic chemistryGeneral ChemistryReviewBiodegradationBiodegradable polymerDurabilitybiodegradationcreepPolyestermodellingCommodity plasticsQD241-441biodegradable polymersenvironmental ageingnanocompositesdurabilityComposite materialPolymers
researchProduct

Templated growth of smart nanocomposite thin films: Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition of vanadyl acetylacet…

2009

Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition methodology has been utilised to produce nanocomposite thin films of gold nanoparticles and vanadium dioxide from vanadyl acetylacetonate and auric acid. The addition of tetraoctyl ammonium bromide (TOAB) to the precursor Solution gave control of the size and distribution of gold nanoparticles in the vanadium oxide matrix. These reactions led to vanadium dioxide films with reduced crystallite sizes and enhanced thermochromic properties. The films were analysed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Their optical and thermochromic behaviour was also determined, This h…

Ammonium bromideNanocompositeInorganic chemistryOxideSettore ICAR/10 - Architettura TecnicaChemical vapor depositionVanadium oxideInorganic Chemistrychemistry.chemical_compoundCVD Nanocomposite Thermochromism Aerosol HybridSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryX-ray photoelectron spectroscopyChemical engineeringColloidal goldMaterials ChemistryChemical Vapor Deposition CVD Vanadium dioxide thermochromic coatingsPhysical and Theoretical ChemistryVanadyl acetylacetonate
researchProduct

Graphene and ionic liquids new gel paste electrodes for caffeic acid quantification

2015

Abstract Graphene/ionic liquids nanocomposite gels were synthesized by an electrochemical etching approach and fully characterized under a morphological and structural point of view. For this purpose, several analytical techniques were applied, as HR-TEM/EDX (High Resolution-Transmission Electron Microscopy/Energy Dispersive X-Ray Analysis); FE-SEM/EDX (Field Emission-Scanning Electron Microscopy/Energy Dispersive X-Ray Analysis); XPS (X-Ray Photoelectron Spectroscopy); FT-IR (Fourier Transform-Infrared Spectroscopy) and electrochemical techniques. After the characterization study, nanocomposite-gel paste electrodes were assembled, exhibiting a selective and specific detection toward the ca…

Analytical chemistrySurfaces Coatings and FilmAnti-oxidant agentsCondensed Matter PhysicAnti-oxidant agentIonic liquidElectrochemistrylaw.inventionNanocompositeschemistry.chemical_compoundX-ray photoelectron spectroscopylawgraphene Ionic liquids; nanocomposites; electrochemistry; caffeic acid; anti-oxidant agentsMaterials ChemistryElectrochemistryMoleculeElectrical and Electronic EngineeringInstrumentationSettore CHIM/02 - Chimica FisicaMaterials Chemistry2506 Metals and AlloySettore CHIM/03 - Chimica Generale e InorganicaDetection limitCaffeic acidNanocompositeNanocompositeGrapheneElectronic Optical and Magnetic MaterialMetals and AlloysCondensed Matter Physicsgraphene Ionic liquidsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonic liquidschemistryChemical engineeringIonic liquidElectrode2506Graphene
researchProduct

Step-by-Step Growth of HKUST-1 on Functionalized TiO2 Surface: An Efficient Material for CO2 Capture and Solar Photoreduction

2018

The present study reports on a simple preparation strategy of a hybrid catalyst, TiO2/HKUST-1, containing TiO2 anatase nanoparticles (NPs) with tailored morphology and photocatalytic activity coupled with a porous metal-organic framework (MOF), namely HKUST-1, as an advanced material for the CO2 photocatalytic reduction. In detail, TiO2/HKUST-1 catalyst was prepared via an easy slow-diffusion method combined with a step-by-step self-assembly at room temperature. The growth of crystalline HKUST-1 onto titania surface was achieved by functionalizing TiO2 nanocrystals, with phosphoesanoic acid (PHA), namely TiO2-PHA, which provides an intimate contact between MOF and TiO2. The presence of a cr…

AnataseMaterials scienceMetal-organic frameworkNanoparticle02 engineering and technology010402 general chemistrylcsh:Chemical technology01 natural sciencesCatalysisCatalysilcsh:Chemistrychemistry.chemical_compoundhybrid nanocompositetitanialcsh:TP1-1185Physical and Theoretical Chemistrymetal-organic frameworksCO<sub>2</sub> photoreductionNanocompositetitanium dioxide021001 nanoscience & nanotechnologyHKUST-1MOFsCo2photoreduction0104 chemical sciencesNanocrystalchemistryChemical engineeringlcsh:QD1-999CO2 reductionCO2 photoreductionTitanium dioxidePhotocatalysisMetal-organic frameworkSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologyphotocatalysisVisible spectrumCatalysts
researchProduct

Core-shell Zn-doped TiO2-ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition

2010

Zn-doped TiO2 nanofibers shelled with ZnO hierarchical nanoarchitectures have been fabricated combining electrospinning of TiO2 (anatase) nanofibers and metal-organic chemical vapor deposition (MOCVD) of ZnO. The proposed hybrid approach has proven suitable for tailoring both the morphology of the ZnO external shell as well as the crystal structure of the Zn-doped TiO2 core. It has been found that the Zn dopant is incorporated in calcined electrospun nanofibers without any evidence of ZnO aggregates. Effects of different Zn doping levels of Zn-doped TiO2 fibers have been scrutinized and morphological, structural, physico-chemical and optical properties evaluated before and after the hierarc…

AnataseMaterials scienceSettore ING-IND/22 - Scienza e Tecnologia dei MaterialiNanotechnologyCathodoluminescenceChemical vapor depositionNANOWIRESNANOSTRUCTURESZN-DOPINGTITANIA; ELECTROSPINNING; NANOFIBERS; CHEMICAL VAPOUR DEPOSITION ZN-DOPINGROUTEXPSGeneral Materials ScienceMetalorganic vapour phase epitaxyZINC-OXIDENanocompositeDopantELECTROSPINNINGPHOTOCATALYTIC ACTIVITYGeneral ChemistryOPTICAL-PROPERTIESCondensed Matter PhysicsNANOCOMPOSITESElectrospinningCHEMICAL VAPOUR DEPOSITIONNanofiberTITANIAPHOTOLUMINESCENCESENSITIZED SOLAR-CELLSSENSITIZED SOLAR-CELLS; ZINC-OXIDE; PHOTOCATALYTIC ACTIVITY; OPTICAL-PROPERTIES; PHOTOLUMINESCENCE; NANOSTRUCTURES; NANOCOMPOSITES; NANOWIRES; ROUTE; XPSNANOFIBERS
researchProduct

Halloysite Nanotubes Loaded with Calcium Hydroxide: Alkaline Fillers for the Deacidification of Waterlogged Archeological Woods

2018

A novel green protocol for the deacidifying consolidation of waterlogged archaeological woods through aqueous dispersions of polyethylene glycol (PEG) 1500 and halloysite nanotubes containing calcium hydroxide has been designed. First, we prepared functionalized halloysite nanotubes filled with Ca(OH)2 in their lumen. The controlled and sustained release of Ca(OH)2 from the halloysite lumen extended its neutralization action over time, allowing the development of a long-term deacidification of the wood samples. A preliminary thermomechanical characterization of clay/polymer nanocomposites allows us to determine the experimental conditions to maximize the consolidation efficiency of the wood…

Archaeological woodTubular nanostructures KaoliniteMaterials sciencePolymer nanocompositelong-term protectionComposite numberHalloysite nanotubeAlkalinityWood productLong-term preservationMechanical performancedeacidificationLime02 engineering and technologyPolyethylene glycolengineering.material010402 general chemistrycomplex mixtures01 natural sciencesHalloysitechemistry.chemical_compoundPEG ratioLigninGeneral Materials SciencehalloysiteFillerYarn Aqueous dispersionwaterlogged archaeological woodschemistry.chemical_classificationCalcium hydroxideNanocompositeHydrated limetechnology industry and agriculturePolymerThermo-mechanical characterization021001 nanoscience & nanotechnologyArchaeologyPEG0104 chemical sciencesNanotubechemistryengineeringExperimental condition0210 nano-technology
researchProduct

NANO, SMART AND COMPOSITE MATERIALS IN CONSTRUCTION

2018

Si può generalmente affermare che l’industria delle costruzioni costituisca un settore capace di attivare grandi attività economiche e di spe- rimentazione, anche se spesso esso utilizzi componenti e sistemi abbastanza obsoleti, se paragonati ad altri settori industriali quali, ad esempio, quello bellico o farmaceutico. La ricerca e lo sviluppo di materiali innovativi costituiscono una priorità delle agende scientifiche di parecchie Nazioni, con investimenti - sia nel pubblico che nel privato - di diversi milioni di dollari l’anno. La scelta tra i nuovi materiali avanzati è sempre più vasta ed articolata, con una capillare attenzione rivolta sia alle prime fasi della progetta- zione che all…

Architecture Sustainability Nanotechnology Nanocomposite materials ConstructionSettore ICAR/10 - Architettura Tecnica
researchProduct

Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites

2016

In this work, biopolymer-based nanocomposites with antimicrobial properties were prepared via melt-compounding. In particular, graphene nanoplatelets (GnPs) as fillers and an antibiotic, i.e., ciprofloxacin (CFX), as biocide were incorporated in a commercial biodegradable polymer blend of poly(lactic acid) (PLA) and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), and rheological and mechanical measurements. Moreover, the effect of GnPs on the antimicrobial properties and release kinetics of CFX was evaluated. The results indicated that the incorporation of GnPs increased the stiffness of the biopolymeric matrix and allowed for the t…

BiocideMaterials scienceScanning electron microscopeKineticsAntimicrobial activity; Ciprofloxacin; Drug release; Graphene nanoplatelets (GnPs); Nanocomposites; Poly(lactic acid) (PLA); Materials Science (all)02 engineering and technologyengineering.material010402 general chemistry01 natural scienceslcsh:TechnologyArticlepoly(lactic acid) (PLA)ciprofloxacinnanocompositesGeneral Materials ScienceComposite materiallcsh:Microscopydrug releaselcsh:QC120-168.85NanocompositeNanocompositeantimicrobial activitylcsh:QH201-278.5lcsh:T021001 nanoscience & nanotechnologyAntimicrobialBiodegradable polymerCopolyestergraphene nanoplatelets (GnPs)0104 chemical sciencesChemical engineeringnanocomposites; graphene nanoplatelets (GnPs); poly(lactic acid) (PLA); antimicrobial activity; drug release; ciprofloxacinlcsh:TA1-2040engineeringlcsh:Descriptive and experimental mechanicsMaterials Science (all)Biopolymerlcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials; Volume 9; Issue 5; Pages: 351
researchProduct

Halloysite-Based Bionanocomposites

2017

Scientific research has been invigorated by a new class of biodegradable materials as alternatives to polymers derived from fossils. Such biomaterials can also offer economic advantages because they are derived from renewable resources. Several biopolymers (gelatin, chitin, chitosan, starch, pectin, cellulose and its modified versions, etc.) have been exploited to produce films and formulations. Their use is limited because of fast degradation, predominant hydrophilic character, and, in some cases, unsatisfactory mechanical properties. However, the properties of these polymers can be improved by using inorganic fillers such as additives. Halloysite nanotube is a promising green filler for t…

BiopolymerMaterials scienceApplicationHalloysite nanotube02 engineering and technologySettore CHIM/06 - Chimica Organicaengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesHalloysitePhysicochemical propertie0104 chemical sciencesBiopolymers halloysite nanotubes HNT-biopolymers nanocomposites physicochemical properties applicationsHNT-biopolymers nanocompositeChemical engineeringengineering0210 nano-technologySettore CHIM/02 - Chimica Fisica
researchProduct