Search results for " nanofibers"

showing 10 items of 20 documents

Effect of alkyl derivatization of gellan gum during the fabrication of electrospun membranes

2021

Electrospun nanofibers based on polysaccharides represent a consolidated approach in Tissue Engineering and Regenerative Medicine (TERM) and nanomedicine as a drug delivery system (DDS). In this work, two chemical derivatives of a low molecular weight gellan gum (96.7 kDa) with aliphatic pendant tails were processed by electrospinning technique into non-woven nanofibrous mats. In order to generate spinnable blends, it was necessary to associate poly vinyl alcohol (PVA). The relationships between the physicochemical properties and the processability via electrospinning technique of gellan gum alkyl derivatives (GG-C8 and GG-C12 having a degree of alkyl chain derivatization of 17 mol % and 1…

Materials sciencePolymers and PlasticsMaterials Science (miscellaneous)02 engineering and technology010402 general chemistry01 natural sciencesIndustrial and Manufacturing Engineeringchemistry.chemical_compoundTissue engineeringelectrospinning; gellan gum; nanofibers; PVAnanofibersChemical Engineering (miscellaneous)DerivatizationAlkylchemistry.chemical_classificationElectrospinning021001 nanoscience & nanotechnologyGellan gumElectrospinning0104 chemical scienceschemistryChemical engineeringSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoNanofiberDrug deliveryPVANanomedicine0210 nano-technologygellan gum
researchProduct

Controlled Release of Metformin Hydrochloride from Core-Shell Nanofibers with Fish Sarcoplasmic Protein

2019

Ficai, Anton/0000-0002-1777-0525; Karademir, Betul/0000-0003-1762-0284 WOS:000503463400074 PubMed ID: 31658758 Background and Objectives: A coaxial electrospinning technique was used to produce core/shell nanofibers of a polylactic acid (PLA) as a shell and a polyvinyl alcohol (PVA) containing metformin hydrochloride (MH) as a core. Materials and Methods: Fish sarcoplasmic protein (FSP) was extracted from fresh bonito and incorporated into nanofiber at various concentrations to investigate the influence on properties of the coaxial nanofibers. The morphology, chemical structure and thermal properties of the nanofibers were studied. Results: The results show that uniform and bead-free struct…

Medicine (General)POLYMERIC NANOFIBERSChemical structurewound healingIn Vitro Techniquescoaxial electrospinningPolyvinyl alcoholArticleDELIVERYCrystallinitychemistry.chemical_compoundcoaxial electrospinning; fish sarcoplasmic protein; nanofibers; wound healingR5-920Differential scanning calorimetryPolylactic acidnanofibersSpectroscopy Fourier Transform InfraredMedicineAnimalsbusiness.industryTunaGeneral MedicineControlled releaseMetforminfish sarcoplasmic proteinDrug LiberationSarcoplasmic ReticulumchemistryChemical engineeringNanofiberDelayed-Action PreparationsPolyvinyl AlcoholELECTROSPUN NANOFIBERSCoaxialbusinessFIBERSMATRICES
researchProduct

Hybrid polyoxometalate nanofibres

2010

Polyoxometalates nanofibersSettore CHIM/02 - Chimica Fisica
researchProduct

Nanofibrous Polymeric Membranes for Air Filtration Application: A Review of Progress after the COVID‐19 Pandemic

2023

Air pollution is one of the major global problems causing around 7 million dead per year. In fact, a connection between infectious disease transmission, including COVID-19, and air pollution has been proved: COVID-19 consequences on human health are found to be more severe in areas characterized by high levels of particulate matter (PM). Therefore, after the COVID-19 pandemic, the production of air filtration devices with high filtration efficiency has gained more and more attention. Herein, a review of the post-COVID-19 pandemic progress in nanofibrous polymeric membranes for air filtration is provided. First, a brief discussion on the different types of filtration mechanism and the key pa…

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPolymers and PlasticsGeneral Chemical EngineeringOrganic Chemistryair filtration air pollution COVID-19 fibers nanofibers membranes particulate matter polymeric membranesMaterials ChemistryMacromolecular Materials and Engineering
researchProduct

Photothermal nanofibrillar membrane based on hyaluronic acid and graphene oxide to treat Staphylococcus aureus and Pseudomonas aeruginosa infected wo…

2022

Here we reported the fabrication of an electrospun membrane based on a hyaluronic acid derivative (HA-EDA) to be used as a bandage for the potential treatment of chronic wounds. The membrane, loaded with graphene oxide (GO) and ciprofloxacin, showed photothermal properties and light-triggered drug release when irradiated with a near-infrared (NIR) laser beam. Free amino groups of HA-EDA derivative allowed autocrosslinking of the elec- trospun membrane; thus, a substantial enhancement in the hydrolytic resistance of the patch was obtained. In vitro antibacterial activity studies performed on Staphylococcus aureus and Pseudomonas aeruginosa revealed that such electrospun membranes, due to the…

Staphylococcus aureusGeneral MedicineStaphylococcal InfectionsBiochemistryHyaluronan derivative Graphene oxide Nanofibers AntibiofilmAnti-Bacterial AgentsStructural BiologySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoPseudomonas aeruginosaWound InfectionHumansGraphiteHyaluronic AcidMolecular BiologyInternational journal of biological macromolecules
researchProduct

Novel method for functionalising and patterning textile composites:Liquid resin print

2016

Abstract The paper reports a novel method of integrating resin into continuous textile reinforcement. The method presents a print of liquid reactive resin into textile preforms. A series of targeted injections forms a patch which upon consolidation and curing transforms into a stiff region continuously spanning through preform thickness. Enhancing the injected resin with conductive phase allows creating a pattern of patches with controlled dimensions and added functionalities. Patterned composites reveal features which are not typical for conventional composites such as fibre bridged interfaces, regular thickness variation, and gradient matrix properties. The presented study explores the ro…

Textile reinforcementA. Multifunctional compositesMaterials sciencetechnology industry and agricultureElectrically conductiveE. 3-D printingLiquid resin02 engineering and technologyBristol Composites Institute ACCIS010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesA. Carbon nanotubes and nanofibers0104 chemical sciencesMechanics of MaterialsCeramics and CompositesSurface modificationTextile compositeComposite materialB. Electrical properties0210 nano-technology/dk/atira/pure/core/keywords/composites_SRIElectrical conductorCuring (chemistry)
researchProduct

Nexus of Electrospun Nanofibers and Additive Processing—Overview of Wearable Tactical Gears for CBRNE Defense

2021

Due to complex nature of twenty-first century battlefield, soldiers must perform multiple tasks to protect nations while maintaining their own safety. Advances in technological innovations are critical to support such functionalities to enhance safety and security. Using nexus of electrospinning and additive processing, we present how recent developments can be used to produce new generation of protective fabrics with integrative force protection, sensing/detection of chemical, biological, radiological, nuclear, and high yield explosives (CBRNE), and biomedical functionalities. Although electrospinning has been in use for some time, the special blends and configurations of nanofibers, as de…

Uv protectionScaffoldComputer scienceElectrospun nanofibersNanofiberWearable computerNanotechnologyForce protectionNexus (standard)Electrospinning
researchProduct

Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: Fabrication, characterization and in vitro osteoindu…

2020

Item does not contain fulltext The aim of the work was to determine the effects of the chemical functionalization of hyaluronic acid (HA) with pendant aliphatic tails at different lengths and free amino groups in terms of chemical reactivity, degradation rate, drug-eluting features, and surface properties when processed as electrospun membranes (EM) evaluating the osteoinductive potential for a possible application as guided bone regeneration (GBR). To this end, a series of HA derivatives with different aliphatic tails (DD-Cx mol% ≈ 12.0 mol%) and decreasing derivatization of free amino groups (DD(EDA) mol% from 70.0 to 30.0 mol%) were first synthesized, namely Hn. Then dexamethasone-loaded…

Whole membraneBone RegenerationDexamethasone; Electrospun nanofibers; GBR membranes; Hyaluronic acid alkylated.Nanofibers02 engineering and technologyHyaluronic acid alkylated01 natural sciencesPolyvinyl alcoholDexamethasoneGBR membranesHydrolysischemistry.chemical_compoundColloid and Surface ChemistryOsteogenesis0103 physical sciencesPhysical and Theoretical ChemistryHyaluronic AcidBone regenerationAlkylchemistry.chemical_classificationAqueous solutionMembranesElectrospun nanofibers010304 chemical physicsCyclodextrinMembranes ArtificialSurfaces and InterfacesGeneral Medicine021001 nanoscience & nanotechnologyReconstructive and regenerative medicine Radboud Institute for Molecular Life Sciences [Radboudumc 10]Membranechemistry0210 nano-technologyBiotechnologyNuclear chemistry
researchProduct

Black Bioinks from Superstructured Carbonized Lignin Particles

2023

A renewable source of carbon black is introduced by the processing of lignin from agro-forestry residues. Lignin side streams are converted into spherical particles by direct aerosolization followed by carbonization. The obtained submicron black carbon is combined with cellulose nanofibers, which act as a binder and rheology modifier, resulting in a new type of colloidal bioink. The bioinks are tested in handwriting and direct ink writing. After consolidation, the black bioinks display total light reflectance (%R) at least three times lower than commercial black inks (reduction from 12 to 4%R). A loading of up to 20% of nanofibers positively affects the cohesion of the dried bioink (1 to 16…

carbon materialsparticlenetworkspigmentshiiliselluloosacarbonizationnanotekniikkacoatingskoksauscellulose nanofibers
researchProduct

Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning

2021

Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic–basic–neutralization–stretching–drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the gr…

polymer fiber yarnsMaterials sciencePolymers and PlasticsComposite numberOrganic chemistrymechanical propertiesArticlelaw.inventionChitosanchemistry.chemical_compoundCrystallinityQD241-441lawFiberComposite materialCrystallizationCellulosecellulose nanofiberschemistry.chemical_classificationGeneral ChemistryPolymerchemistrybio-nanocompositesgel/wet spinningNanofiberchitosanPolymers
researchProduct