Search results for " nanostructure"

showing 10 items of 175 documents

Fourth‐generation glucose sensors composed of copper nanostructures for diabetes management: A critical review

2022

Abstract More than five decades have been invested in understanding glucose biosensors. Yet, this immensely versatile field has continued to gain attention from the scientific world to better understand and diagnose diabetes. However, such extensive work done to improve glucose sensing devices has still not yielded desirable results. Drawbacks like the necessity of the invasive finger‐pricking step and the lack of optimization of diagnostic interventions still need to be considered to improve the testing process of diabetic patients. To upgrade the glucose‐sensing devices and reduce the number of intermediary steps during glucose measurement, fourth‐generation glucose sensors (FGGS) have be…

NanostructureMaterials sciencediabetes managementelectrode materialsBiomedical EngineeringReviewsPharmaceutical Sciencechemistry.chemical_elementEarly detectionhybrid copper nanostructuresNanotechnologyRM1-950ReviewB800Chemical engineeringnonenzymatic glucose sensorsDiabetes managementFourth generationGlucose sensorsearly detectionElectrode materialCopperchemistryTP155-156Therapeutics. PharmacologyTP248.13-248.65BiotechnologyBioengineering & Translational Medicine
researchProduct

Covalently Conjugated Gold-Porphyrin Nanostructures

2020

Gold nanoparticles show important electronic and optical properties, owing to their size, shape, and electronic structures. Indeed, gold nanoparticles containing no more than 30&ndash

NanostructureMaterials sciencegold nanoparticle; luminescence; nanostructures; porphyrin; surface plasmon resonanceGeneral Chemical EngineeringNanoparticleNanotechnologyCovalently Conjugated Gold–Porphyrin NanostructuresArticlelcsh:Chemistrychemistry.chemical_compoundnanostructuresluminescenceGeneral Materials ScienceSurface plasmon resonancePlasmonSurface plasmonAu NPsPorphyrinlcsh:QD1-999chemistryColloidal goldgold nanoparticle luminescence nanostructures porphyrin surface plasmon resonanceLuminescenceporphyringold nanoparticlesurface plasmon resonance
researchProduct

Optical biosensors based on ZnO nanostructures: advantages and perspectives. A review

2016

This review article highlights the application of beneficial physico-chemical properties of ZnO nanostructures for the detection of wide range of biological compounds. As the medical diagnostics require accurate, fast and inexpensive biosensors, the advantages inherent optical methods of detection are considered. The crucial points of the immobilization process, responsible for biosensor performance (biomolecule adsorption, surface properties, surface defects role, surface functionalization etc.) along with the interaction mechanism between biomolecules and ZnO are disclosed. The latest achievements in surface plasmon resonance (SPR), surface enhanced Raman spectroscopy (SERS) and photolumi…

NanostructurePhotoluminescenceMaterials scienceNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesAdsorptionMaterials Chemistry[CHIM]Chemical SciencesElectrical and Electronic EngineeringSurface plasmon resonanceInstrumentationComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationBiomoleculeMetals and AlloysKemiSurface-enhanced Raman spectroscopy021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryOptical biosensors; ZnO; Nanostructures; Immobilization; Photoluminescence based biosensors; Interaction mechanismChemical SciencesSurface modification0210 nano-technologyBiosensor
researchProduct

Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization

2015

This work studies the electrochemical and photoelectrochemical properties of a new type of TiO2 nanostructure (nanosponge) obtained by means of anodization in a glycerol/water/NH4F electrolyte under controlled hydrodynamic conditions. For this purpose different techniques such as Scanning Electronic Microscopy (SEM), Raman Spectroscopy, Electrochemical Impedance Spectroscopy (EIS) measurements, Mott–Schottky (M−S) analysis and photoelectrochemical water splitting tests under standard AM 1.5 conditions are carried out. The obtained results show that electron–hole separation is facilitated in the TiO2 nanosponge if compared with highly ordered TiO2 nanotube arrays. As a result, nanosponges en…

NanotubeNanostructureMaterials scienceAnalytical chemistryEnergy Engineering and Power Technologychemistry.chemical_elementElectrolyteINGENIERIA QUIMICAsymbols.namesakeElectrochemical Impedance SpectroscopyElectrical and Electronic EngineeringPhysical and Theoretical ChemistryWater splittingTiO2 nanostructuresRenewable Energy Sustainability and the EnvironmentAnodizingTitaniDielectric spectroscopyHydrodynamic conditionsElectroquímicaChemical engineeringchemistrysymbolsWater splittingMott–Schottky analysisAnodizationRaman spectroscopyTitanium
researchProduct

Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes (SPEs)

2014

Oxidized Single-Wall Carbon Nanohorns (o-SWCNHs) were used, for the first time, to assemble chemically modified Screen Printed Electrodes (SPEs) selective towards the electrochemical detection of Epinephrine (Ep), in the presence of Serotonine-5-HT (S-5HT), Dopamine (DA), Nor-Epineprhine (Nor-Ep), Ascorbic Acid (AA), Acetaminophen (Ac) and Uric Acid (UA). The Ep neurotransmitter was detected by using Differential Pulse Voltammetry (DPV), in a wide linear range of concentration (2-2500 μM) with high sensitivity (55.77 A M(-1) cm(-2)), very good reproducibility (RSD% ranging from 2 to 10 for different SPEs), short response time for each measurement (only 2s) and low detection of limit (LOD=0.…

Neurotransmitters; Screen Printed Electrodes (SPEs); Selective detection; SWCNHs; Biosensing Techniques; Electrochemical Techniques; Electrodes; Epinephrine; Limit of Detection; Nanostructures; Oxidation-Reduction; Reproducibility of Results; Biophysics; Biomedical Engineering; Biotechnology; Electrochemistry; Medicine (all)NanostructureEpinephrineScreen Printed Electrodes (SPEs)ElectrodeBiophysicsAnalytical chemistryBiomedical EngineeringReproducibility of ResultBiosensing TechniquesElectrochemistryNanomaterialsSWCNHs; Screen Printed Electrodes (SPEs); Neurotransmitters; Selective detectionBiosensing TechniqueSelective detectionLimit of DetectionElectrochemistrySWCNHSettore CHIM/01 - Chimica AnaliticaNeurotransmitterElectrodesDetection limitSWCNHsReproducibilityElectrochemical TechniqueChemistryMedicine (all)Reproducibility of ResultsGeneral MedicineElectrochemical TechniquesNeurotransmittersAscorbic acidNanostructuresLinear rangeBiophysicElectrodeDifferential pulse voltammetryOxidation-ReductionNuclear chemistryBiotechnology
researchProduct

Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application

2016

AbstractA combination of photocurrent and photothermal spectroscopic techniques is applied to experimentally quantify the useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (μc-Si:H) films incorporating optimized metal nanoparticle arrays, located at the rear surface, for improved light trapping via resonant plasmonic scattering. The photothermal technique accounts for the total absorptance and the photocurrent signal accounts only for the photons absorbed in the μc-Si:H layer (useful absorptance); therefore, the method allows for independent quantification of the useful and parasitic absorptance of the plasmonic (or any other) light trapping structure. W…

PHOTOCURRENT SPECTROSCOPY BACK REFLECTORS NANOSTRUCTURES NANOPARTICLES DESIGN ROUGH.Materials scienceSiliconchemistry.chemical_element02 engineering and technologyNANOSTRUCTURES7. Clean energy01 natural sciencesSettore ING-INF/01 - ElettronicaArticleSettore FIS/03 - Fisica Della MateriaDESIGNPHOTOCURRENT SPECTROSCOPY0103 physical sciencesNANOPARTICLESPlasmonic solar cellAbsorption (electromagnetic radiation)Plasmon010302 applied physicsPhotocurrentMultidisciplinarybusiness.industryROUGHPhotothermal therapy021001 nanoscience & nanotechnologyWavelengthchemistryAbsorptanceOptoelectronicsBACK REFLECTORS0210 nano-technologybusiness
researchProduct

Optically assisted trapping with high-permittivity dielectric rings: Towards optical aerosol filtration

2016

Controlling the transport, trapping, and filtering of nanoparticles is important for many applications. By virtue of their weak response to gravity and their thermal motion, various physical mechanisms can be exploited for such operations on nanoparticles. However, the manipulation based on optical forces is potentially most appealing since it constitutes a highly deterministic approach. Plasmonic nanostructures have been suggested for this purpose, but they possess the disadvantages of locally generating heat and trapping the nanoparticles directly on surface. Here, we propose the use of dielectric rings made of high permittivity materials for trapping nanoparticles. Thanks to their abilit…

PermittivityMaterials sciencePhysics and Astronomy (miscellaneous)Field (physics)[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsFOS: Physical sciencesNanoparticlePhysics::Optics02 engineering and technologyTrappingDielectric[SPI.MAT] Engineering Sciences [physics]/Materials01 natural scienceslaw.inventionlaw0103 physical sciences010306 general physicsFiltration[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph]Condensed Matter - Materials Sciencebusiness.industryMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyAerosolOptoelectronics0210 nano-technologyPlasmonic nanostructuresbusinessOptics (physics.optics)Physics - Optics
researchProduct

Negative pressures in CaWO4 nanocrystals

2009

Tetragonal scheelite-type CaWO4 nanocrystals recently prepared by a hydrothermal method show an enhancement of its structural symmetry with the decrease in nanocrystal size. The analysis of the volume dependence of the structural parameters in CaWO4 nanocrystals with the help of ab initio total-energy calculations shows that the enhancement of the symmetry in the scheelite-type nanocrystals is a consequence of the negative pressure exerted on the nanocrystals; i.e., the nanocrystals are under tension. Besides, the behavior of the structural parameters in CaWO4 nanocrystals for sizes below 10 nm suggests an onset of a scheelite-to-zircon phase transformation in good agreement with the predic…

Phase transitionMaterials scienceCalcium compoundsAb initioUNESCO::FÍSICAGeneral Physics and AstronomyNanoparticleNanostructured materialsCrystal symmetryCrystallographyTetragonal crystal systemNanocrystalAb initio quantum chemistry methodsChemical physicsTotal energy:FÍSICA [UNESCO]Phase (matter)Ab initio calculations ; Calcium compounds ; Crystal growth from solution ; Crystal symmetry ; Nanostructured materials ; Solid-state phase transformations ; Total energySolid-state phase transformationsAb initio calculationsCrystal growth from solutionMonoclinic crystal system
researchProduct

Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches

2009

To simulate the perfect single-walled boron nitride nanotubes and nanoarches with armchair- and zigzag-type chiralities and uniform diameter of � 5 nm, we have constructed their one-dimensional (1D) periodic models. In this study, we have compared the calculated properties of nanotubes with those for both hexagonal and cubic phases of bulk: bond lengths, binding energies per B–N bond, effective atomic charges as well as parameters of total and projected one-electron densities of states. For both phases of BN bulk, we have additionally verified their lattice constants. In the density functional theory (DFT), calculations performed using formalism of the localized Gaussian-type atomic functio…

PhononChemistryC. electronic structureBinding energyD. elastic and vibrational properties02 engineering and technologyGeneral ChemistryElectronic structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesA. BN nanostructuresOptical properties of carbon nanotubesBond lengthCondensed Matter::Materials ScienceLattice constantAb initio quantum chemistry methodsB. ab initio calculations0103 physical sciencesGeneral Materials ScienceDensity functional theoryAtomic physics010306 general physics0210 nano-technologyJournal of Physics and Chemistry of Solids
researchProduct

Photocurrent Spectroscopy Applied to the Characterization of Compositionally and Structurally Graded Materials: from Thin Films to Nanostructures

2010

Photocurrent Spectroscopy Characterization of Compositionally and Structurally Graded Materials Thin Films Nanostructures
researchProduct