Search results for " neuroprotection"

showing 10 items of 35 documents

DHA protects PC12 cells against oxidative stress and apoptotic signals through the activation of the NFE2L2/HO-1 axis

2019

Docosahexaenoic acid (DHA) is an omega‑3 polyunsaturated fatty acid, derived mainly from fish oil. It is well known that DHA is present in high concentrations in nervous tissue and plays an important role in brain development and neuroprotection. However, the molecular mechanisms underlying its role remain to be fully elucidated. In this study, to enhance our understanding of the pathophysiological role of DHA, we investigated the possible neuroprotective mechanisms of action of DHA against hydrogen peroxide (H2O2)‑induced oxidative damage in a rat pheochromocytoma cell line (PC12). Specifically, we evaluated the viability, oxidation potential, and the expression and production of antioxida…

0301 basic medicineAnimals; Apoptosis; Docosahexaenoic Acids; Glutathione Peroxidase; Heme Oxygenase-1; Hydrogen Peroxide; NF-E2-Related Factor 2; Neuroprotective Agents; Oxidative Stress; PC12 Cells; Rats; Superoxide DismutaseAntioxidantDocosahexaenoic AcidsSettore BIO/14 - FARMACOLOGIADHA neuroprotection PV12 cellsNF-E2-Related Factor 2medicine.medical_treatmentApoptosismedicine.disease_causePC12 CellsNeuroprotectionSuperoxide dismutase03 medical and health scienceschemistry.chemical_compound0302 clinical medicinedecosahexaenoic acidGeneticsmedicineAnimalschemistry.chemical_classificationGlutathione PeroxidasebiologySuperoxide DismutaseChemistryGlutathione peroxidasenuclear factorHydrogen PeroxideGeneral MedicineAscorbic acidMalondialdehydeNFE2L2RatsCell biologyOxidative StressNeuroprotective Agents030104 developmental biology030220 oncology & carcinogenesisbiology.proteinHeme Oxygenase-1Oxidative stressInternational Journal of Molecular Medicine
researchProduct

The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation.

2016

Guanine-based purines (GBPs) have been recently proposed to be not only metabolic agents but also extracellular signaling molecules that regulate important functions in the central nervous system. In such way, GBPs-mediated neuroprotection, behavioral responses and neuronal plasticity have been broadly described in the literature. However, while a number of these functions (i.e., GBPs neurothophic effects) have been well-established, the molecular mechanisms behind these GBPs-dependent effects are still unknown. Furthermore, no plasma membrane receptors for GBPs have been described so far, thus GBPs are still considered orphan neuromodulators. Interestingly, an intricate and controversial f…

0301 basic medicineCell signalingAdenosineAdenosinaguanine-based purines; guanosine; neuroprotectionReviewBiologySettore BIO/09 - FisiologiaNeuroprotection03 medical and health sciences0302 clinical medicineguanine-based purinespurinergic receptorsmedicineGuanosine triphosphatasePharmacology (medical)ReceptorPharmacologyTrifosfat de guanosinasynaptic plasticityPurinergic receptorAdenosine; Guanine-based purines; Guanosine; Neuroprotection; Purinergic receptors; Synaptic plasticity; Pharmacology; Pharmacology (medical)Adenosine receptorAdenosineNeuromodulation (medicine)guanosine030104 developmental biologyBiochemistryPurinesadenosineSynaptic plasticityneuroprotectionNeurosciencePurinergic receptor030217 neurology & neurosurgeryGuanine-based purinemedicine.drugFrontiers in pharmacology
researchProduct

Brain Distribution and Modulation of Neuronal Excitability by Indicaxanthin From Opuntia Ficus Indica Administered at Nutritionally-Relevant Amounts

2018

Several studies have recently investigated the role of nutraceuticals in complex pathophysiological processes such as oxidative damages, inflammatory conditions and excitotoxicity. In this regard, the effects of nutraceuticals on basic functions of neuronal cells, such as excitability, are still poorly investigated. For this reason, the possible modulation of neuronal excitability by phytochemicals (PhC) could represent an interesting field of research given that excitotoxicity phenomena are involved in neurodegenerative alterations leading, for example, to Alzheimer's disease. The present study was focused on indicaxanthin from Opuntia ficus indica, a bioactive betalain pigment, with a pro…

0301 basic medicineCerebellumAgingCognitive NeuroscienceExcitotoxicityHippocampusindicaxanthinBiologyHippocampal formationmedicine.disease_causeNeuroprotectionmicroiontophoresisbrain localizationlcsh:RC321-57103 medical and health scienceschemistry.chemical_compound0302 clinical medicineexcitabilitymedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchnutraceuticalselectrophysiologyCortex (botany)brain localization; electrophysiology; excitability; indicaxanthin; microiontophoresis; neuroprotection; nutraceuticals030104 developmental biologymedicine.anatomical_structurechemistrynervous systemmicroiontophoresineuroprotectionNeuronIndicaxanthinNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Aging Neuroscience
researchProduct

The Small Heat Shock Protein α-Crystallin B Shows Neuroprotective Properties in a Glaucoma Animal Model

2017

Glaucoma is a neurodegenerative disease that leads to irreversible retinal ganglion cell (RGC) loss and is one of the main causes of blindness worldwide. The pathogenesis of glaucoma remains unclear, and novel approaches for neuroprotective treatments are urgently needed. Previous studies have revealed significant down-regulation of α-crystallin B as an initial reaction to elevated intraocular pressure (IOP), followed by a clear but delayed up-regulation, suggesting that this small heat-shock protein plays a pathophysiological role in the disease. This study analyzed the neuroprotective effect of α-crystallin B in an experimental animal model of glaucoma. Significant IOP elevation induced b…

0301 basic medicineProteomicsRetinal Ganglion Cellsgenetic structuresNerve fiber layerGlaucomaCell CountMass Spectrometrylcsh:ChemistryPathogenesischemistry.chemical_compound0302 clinical medicineexperimental glaucoma; α-crystallin B; neuroprotection; proteomicsProtein Interaction Mapslcsh:QH301-705.5Spectroscopyα-crystallin BGeneral MedicineComputer Science ApplicationsUp-Regulationmedicine.anatomical_structureNeuroprotective AgentsRetinal ganglion cellneuroprotectionRetinal Neuronsmedicine.medical_specialtyDown-RegulationBiologyNeuroprotectionCatalysisArticleInorganic Chemistry03 medical and health sciencesCrystallinOphthalmologyHeat shock proteinmedicineElectroretinographyAnimalsPhysical and Theoretical ChemistryMolecular BiologyIntraocular Pressureexperimental glaucomaOrganic Chemistryalpha-Crystallin B ChainRetinalGlaucomamedicine.diseaseeye diseasesDisease Models Animal030104 developmental biologylcsh:Biology (General)lcsh:QD1-999chemistry030221 ophthalmology & optometrysense organsInternational Journal of Molecular Sciences; Volume 18; Issue 11; Pages: 2418
researchProduct

Is erythropoietin a worthy candidate for traumatic brain injury or are we heading the wrong way?

2016

Traumatic brain injury (TBI) is a leading cause of death and disability in the modern society. Although primary prevention is the only strategy that can counteract the primary brain damage, numerous preclinical studies have been accumulated in order to find therapeutic strategies against the secondary damage. In this scenario erythropoietin (EPO) has been shown to be a promising candidate as neuroprotective agent. A recent clinical trial, however, has shown that EPO has not an overall effect on outcomes following TBI thus renewing old concerns.  However, the results of a prespecified sensitivity analysis indicate that the effect of EPO on mortality remains still unclear. In the light of the…

0301 basic medicinemedicine.medical_specialtyMolecular PharmacologyNeuropharmacology & PsychopharmacologyTraumatic brain injurySolid baseBrain damageNeuroprotectionGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesTraumatic brain injury0302 clinical medicinePrimary preventionmedicineGeneral Pharmacology Toxicology and PharmaceuticsIntensive care medicineErythropoietin; Neuroprotection; Traumatic brain injuryErythropoietinCause of deathGeneral Immunology and Microbiologybusiness.industryArticlesGeneral MedicineOpinion Articlemedicine.diseaseNeuroprotectionClinical trial030104 developmental biologyErythropoietinmedicine.symptombusinessNeuroscience030217 neurology & neurosurgerymedicine.drugF1000Research
researchProduct

Neurological aspects of medical use of cannabidiol

2017

Background: Cannabidiol (CBD) is among the major secondary metabolites of Cannabis devoid of the delta-9-tetra-hydrocannabinol psychoactive effects. It is a resorcinol-based compound with a broad spectrum of potential therapeutic properties, including neuroprotective effects in numerous pathological conditions. CBD neuroprotection is due to its antioxidant and antiinflammatory activities and the modulation of a large number of brain biological targets (receptors, channels) involved in the development and maintenance of neurodegenerative diseases. Objective: The aim of the present review was to describe the state of art about the pre-clinical research, the potential use and, when existing, t…

0301 basic medicinemedicine.medical_specialtyNeurologyCannabidiol; Neurodegenerative diseases; Neurological; Neurology; Neuroprotection; Neuroscience (all); PharmacologyDiseaseBioinformaticsNeurodegenerative diseaseNeuroprotection03 medical and health sciences0302 clinical medicineSettore MED/43 - Medicina LegaleCentral Nervous System DiseasesMedicineAnimalsCannabidiolHumansneurodegenerative diseasesYoung adultAmyotrophic lateral sclerosisPharmacologyNeuroscience (all)biologybusiness.industryGeneral NeuroscienceMultiple sclerosismedicine.diseasebiology.organism_classificationNeuroprotection030104 developmental biologyNeuroprotective AgentsNeurologyNeurologicalcannabidiol; neurodegenerative diseases; neurological; neurology; neuroprotectionCannabisbusinessCannabidiol030217 neurology & neurosurgerymedicine.drug
researchProduct

Neuroprotective effect of erythropoietin and darbepoetin alfa after experimental intracerebral hemorrhage.

2009

OBJECTIVE: Intracerebral hemorrhage (ICH) is a devastating clinical syndrome for which no truly efficacious therapy has yet been identified. In preclinical studies, erythropoietin (EPO) and its long-lasting analog, darbepoetin alfa, have been demonstrated to be neuroprotective in several models of neuronal insult. The objectives of this study were to analyze whether the systemic administration of recombinant human EPO (rHuEPO) and its long-lasting derivative darbepoetin alfa expedited functional recovery and brain damage in a rat model of ICH. METHODS: Experimental ICH was induced in rats by injecting autologous blood into the right striatum under stereotactic guidance. Subsequently, animal…

Brain InfarctionMaleDarbepoetin alfaBrain EdemaBrain damageNeuroprotectionDrug Administration ScheduleCentral nervous system diseaseRats Sprague-DawleyBlood Transfusion AutologousErythropoietin; Erythropoietin derivative; Intracerebral hemorrhage; Neuroprotectionhemic and lymphatic diseasesEdemamedicineAnimalsHumansDarbepoetin alfaErythropoietinCerebral HemorrhageIntracerebral hemorrhagebusiness.industryBasal Ganglia HemorrhageBrainmedicine.diseaseNeuroprotectionCorpus StriatumRecombinant ProteinsRatsErythropoietin derivativeDisease Models AnimalNeuroprotective AgentsTreatment OutcomeErythropoietinAnesthesiaErythropoietin Erythropoietin derivative Intracerebral hemorrhage NeuroprotectionSystemic administrationHematinicsSurgeryNeurology (clinical)medicine.symptomIntracerebral hemorrhagebusinessmedicine.drugNeurosurgery
researchProduct

Anaesthetic-related neuroprotection: intravenous or inhalational agents?

2010

In designing the anaesthetic plan for patients undergoing surgery, the choice of anaesthetic agent may often appear irrelevant and the best results obtained by the use of a technique or a drug with which the anaesthesia care provider is familiar. Nevertheless, in those surgical procedures (cardiopulmonary bypass, carotid surgery and cerebral aneurysm surgery) and clinical situations (subarachnoid haemorrhage, stroke, brain trauma and postcardiac arrest resuscitation) where protecting the CNS is a priority, the choice of anaesthetic drug assumes a fundamental role. Treating patients with a neuroprotective agent may be a consideration in improving overall neurological outcome. Therefore, a cl…

Central Nervous SystemTime FactorsNeuroprotective AgentIntravenouNeuroprotectionSevofluraneBrain IschemiaDesfluranePharmacotherapyadministration /&/ dosage/pharmacologyBrain InjurieAdministration InhalationAdministration; Inhalation Anesthesia; Intravenous Anesthetics; administration /&/ dosage/pharmacology Animals Brain Injuries Brain Ischemia Cardiopulmonary Bypass Central Nervous System; drug effects Clinical Trials as Topic Craniotomy Humans Inhalation; drug effects Neuroprotective Agents; administration /&/ dosage/pharmacology Rats Time FactorsMedicineAnimalsHumansPharmacology (medical)AnesthesiaAdverse effectStrokeAnestheticsClinical Trials as TopicAnaesthetic neuroprotectionCardiopulmonary Bypassbusiness.industryAnimalCardiopulmonary BypaSettore MED/27 - NeurochirurgiaAnestheticdrug effectmedicine.diseaseRatsPsychiatry and Mental healthNeuroprotective AgentsIsofluraneInhalationAnesthesiaBrain Injuriesdrug effectsAnestheticAdministrationAnesthesia IntravenousRatNeurology (clinical)businessIntravenousCraniotomymedicine.drugHuman
researchProduct

A Diet for Dopaminergic Neurons?

2009

Parkinson's disease (PD) is the second most common neurodegenerative disease, which unfortunately is still fatal. Since the discovery of dopamine (DA) neuronal cell loss within the substantia nigra in PD, the past decades have seen the understanding of the pathophysiological mechanisms underlying the degenerative process advance at a very impressive rate. Nevertheless, there is at present no cure for PD. Although there are no proven therapies for prevention, a large body of evidence from animal studies has highlighted the paramount role of dietary factors in counteracting DA degeneration. Consistently, associations between the risk of developing PD and the intake of nutrients, individual fo…

Dietary recommendations Dopaminergic neurons Neurodegeneration Neuroprotection Parkinson’s disease PreventionSettore BIO/09 - Fisiologia
researchProduct

Derivatives of Erythropoietin That Are Tissue Protective But Not Erythropoietic

2004

Erythropoietin (EPO) is both hematopoietic and tissue protective, putatively through interaction with different receptors. We generated receptor subtype–selective ligands allowing the separation of EPO's bioactivities at the cellular level and in animals. Carbamylated EPO (CEPO) or certain EPO mutants did not bind to the classical EPO receptor (EPOR) and did not show any hematopoietic activity in human cell signaling assays or upon chronic dosing in different animal species. Nevertheless, CEPO and various nonhematopoietic mutants were cytoprotective in vitro and conferred neuroprotection against stroke, spinal cord compression, diabetic neuropathy, and experimental autoimmune encephalomyeli…

Encephalomyelitis Autoimmune ExperimentalEncephalomyelitiscarbamylated erythropoietinApoptosisPharmacologyLigandsNeuroprotectionRats Sprague-DawleyMiceStructure-Activity RelationshipDiabetic Neuropathiesddc:570hemic and lymphatic diseasesReceptors ErythropoietinmedicineAnimalsHumansErythropoiesisReceptorErythropoietinCells CulturedNeuronsMice Inbred C3HBinding SitesMultidisciplinaryChemistryExperimental autoimmune encephalomyelitisErythropoietin; erythropoietin receptor; carbamylated erythropoietin; neuroprotective agentsmedicine.diseaseRecombinant ProteinsRatsErythropoietin receptorStrokeNeuroprotective AgentsErythropoietin Erythropoietin derivative NeuroprotectionHematocritMutagenesisErythropoietinDrug DesignImmunologyErythropoiesisFemaleNervous System DiseasesSignal transductionerythropoietin receptorSpinal Cord CompressionSignal Transductionmedicine.drugScience
researchProduct