6533b826fe1ef96bd1283d0b

RESEARCH PRODUCT

The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation.

Francisco CiruelaPatrizia Di IorioFrancesco CaciagliMonica FrinchiGiuseppa MudòRenata CiccarelliDaniele Filippo CondorelliRoberta GarozzoNatale BelluardoVíctor Fernández-dueñasValentina Di Liberto

subject

0301 basic medicineCell signalingAdenosineAdenosinaguanine-based purines; guanosine; neuroprotectionReviewBiologySettore BIO/09 - FisiologiaNeuroprotection03 medical and health sciences0302 clinical medicineguanine-based purinespurinergic receptorsmedicineGuanosine triphosphatasePharmacology (medical)ReceptorPharmacologyTrifosfat de guanosinasynaptic plasticityPurinergic receptorAdenosine; Guanine-based purines; Guanosine; Neuroprotection; Purinergic receptors; Synaptic plasticity; Pharmacology; Pharmacology (medical)Adenosine receptorAdenosineNeuromodulation (medicine)guanosine030104 developmental biologyBiochemistryPurinesadenosineSynaptic plasticityneuroprotectionNeurosciencePurinergic receptor030217 neurology & neurosurgeryGuanine-based purinemedicine.drug

description

Guanine-based purines (GBPs) have been recently proposed to be not only metabolic agents but also extracellular signaling molecules that regulate important functions in the central nervous system. In such way, GBPs-mediated neuroprotection, behavioral responses and neuronal plasticity have been broadly described in the literature. However, while a number of these functions (i.e., GBPs neurothophic effects) have been well-established, the molecular mechanisms behind these GBPs-dependent effects are still unknown. Furthermore, no plasma membrane receptors for GBPs have been described so far, thus GBPs are still considered orphan neuromodulators. Interestingly, an intricate and controversial functional interplay between GBPs effects and adenosine receptors activity has been recently described, thus triggering the hypothesis that GBPs mechanism of action might somehow involve adenosine receptors. Here, we review recent data describing the GBPs role in the brain. We focus on the involvement of GBPs regulating neuronal plasticity, and on the new hypothesis based on putative GBPs receptors. Overall, we expect to shed some light on the GBPs world since although these molecules might represent excellent candidates for certain neurological diseases management, the lack of putative GBPs receptors precludes any high throughput screening intent for the search of effective GBPs-based drugs.

10.3389/fphar.2016.00158https://pubmed.ncbi.nlm.nih.gov/27378923