0000000000310310

AUTHOR

Daniele Filippo Condorelli

0000-0002-0311-5386

showing 18 related works from this author

Downregulation of the Astroglial Connexin Expression and Neurodegeneration after Pilocarpine-Induced Status Epilepticus

2022

Astrocytic networks and gap junctional communication mediated by connexins (Cxs) have been repeatedly implicated in seizures, epileptogenesis, and epilepsy. However, the effect of seizures on Cx expression is controversial. The present study focused on the response of Cxs to status epilepticus (SE), which is in turn an epileptogenic insult. The expression of neuronal Cx36 and astrocytic Cx30 and Cx43 mRNAs was investigated in the brain of rats in the first day after pilocarpine-induced SE. In situ hybridization revealed a progressive decrease in Cx43 and Cx30 mRNA levels, significantly marked 24 h after SE onset in neocortical areas and the hippocampus, and in most thalamic domains, whereas…

electrical synapsesOrganic ChemistryastrocytesneurodegenerationGeneral MedicineSettore BIO/09 - FisiologiaCatalysisComputer Science ApplicationsneuroinflammationInorganic Chemistrygap junctions; electrical synapses; neurodegeneration; neuroinflammation; astrocytes; epilepsyepilepsyPhysical and Theoretical ChemistryMolecular BiologySpectroscopygap junctions
researchProduct

Modulation of the TGF-β1-induced epithelial to mesenchymal transition (EMT) mediated by P1 and P2 purine receptors in MDCK cells

2017

Epithelial to mesenchymal transition (EMT) occurs during embryogenesis or under pathological conditions such as hypoxia, injury, chronic inflammation, or tissue fibrosis. In renal tubular epithelial cells (MDCK), TGF-β1 induces EMT by reducing or increasing epithelial or mesenchymal marker expression, respectively. In this study, we confirmed that the cAMP analogues, 8-CPT-cAMP or N6-Ph-cAMP, inhibited the TGF-β1-driven overexpression of the mesenchymal markers ZEB-1, Slug, Fibronectin, and α-SMA. Furthermore, we showed that A1, A2A, P2Y1, P2Y11, and P2X7 purine receptor agonists modulated the TGF-β1-induced EMT through the involvement of PKA and/or MAPK/ERK signaling. The stimulation o…

0301 basic medicineMAPK/ERK pathwayMadin Darby canine kidney cellEpithelial-Mesenchymal TransitionFibrosiCellTransforming growth factor β1InflammationStimulationBiologyEpithelial to mesenchymal transition; Fibrosis; Madin Darby canine kidney cells; P1/P2 purinergic receptors; Transforming growth factor β1; Molecular Biology; Cellular and Molecular Neuroscience; Cell BiologyTransforming Growth Factor beta103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineDogsmedicineAnimalsEpithelial–mesenchymal transitionReceptorMolecular BiologyEpithelial to mesenchymal transitionP1/P2 purinergic receptorReceptors Purinergic P2Mesenchymal stem cellReceptors Purinergic P1Cell BiologyMadin Darby canine kidney cellsFibrosisCell biologyFibronectin030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisbiology.proteinP1/P2 purinergic receptorsOriginal ArticleTransforming growth factor β1medicine.symptomTransforming growth factor
researchProduct

Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy

2003

Since neural progenitor cells can engraft stably into brain tumors and differentiate along the neuronal and glial line, we tested the hypothesis that transplanted cytosine deaminase (CD)-expressing ST14A cells (an immortalized neural progenitor cell line) can convert locally 5-fluorocytosine (5-FC) into 5-fluorouracil (5-FU) and produce a regression of glioma tumors. ST14A, retrovirally transduced with the E. coli CD gene, showed a strong bystander effect on glioma cells as assessed by in vitro assay. Intracerebral injection of C6 glioma cells generated a rapidly growing tumoral mass. DiI prelabeled ST14A, coinjected into the rat brain with C6 glioma cells, survived in the tumoral mass up t…

Cancer ResearchPathologymedicine.medical_specialtyGenetic enhancementBrain tumorFlucytosineBiologyTransfectionCytosine DeaminaseRats Sprague-DawleyGliomamedicineEscherichia coliAnimalsProdrugsProgenitor cellMolecular BiologyCells CulturedNeuronsBrain NeoplasmsStem CellsCytosine deaminaseTransfectionGenetic TherapyGliomamedicine.diseaseNeural stem cellRatsTransplantationMolecular MedicineFluorouracilStem Cell Transplantation
researchProduct

Fibroblast growth factor-2 and its receptor expression in proliferating precursor cells of the subventricular zone in the adult rat brain

2008

Several findings have suggested the existence in the subventricular zone (SVZ) from sagittal sections of adult rat brain of a trophic mechanism, mediated by fibroblast growth factor-2 (FGF-2) and its multiple high-affinity FGF receptors (FGFRs), regulating neurogenesis mainly by controlling precursor cell proliferation. However, no clear data are available on the expression of FGF-2 and FGFRs in proliferating precursor cells of the SVZ. To address these questions we examined FGF-2 mRNA and its FGFR mRNA expression in proliferating precursor cells of the SVZ by using a double labeling procedure, combining in situ hybridization for FGF-2 and its FGFR mRNA with immunohistochemistry for bromode…

Maleanimal diseasesReceptor expressionGene ExpressionFGF-2Subventricular zoneSVZBiologySettore BIO/09 - FisiologiaCerebral Ventricleschemistry.chemical_compoundPrecursor cellmedicineAnimalsReceptor Fibroblast Growth Factor Type 3RNA MessengerReceptor Fibroblast Growth Factor Type 1Rats WistarReceptor Fibroblast Growth Factor Type 2BrdUCell ProliferationFGF receptorGeneral NeuroscienceFibroblast growth factor receptor 1NeurogenesisBrainPrecursor cellsFibroblast growth factor receptor 4RatsCell biologyAdult Stem CellsFGF receptorsmedicine.anatomical_structureBromodeoxyuridinenervous systemchemistryFibroblast growth factor receptorFibroblast Growth Factor 2NeuroscienceBromodeoxyuridineBrdU; FGF receptors; FGF-2Neuroscience Letters
researchProduct

Distribution and Function of Gap Junction Coupling in Cortical GABAergic Neurons.

2013

Although gap junctions have been observed in GABAergic interneurons of several brain regions, this chapter focuses on the distribution and functions of gap junctions and connexins in inhibitory interneurons of the cerebral cortex and hippocampus. Evidence for interconnections mediated by electrical synapses is reported for at least eight cerebral cortex interneuron types, classified on the basis of morphology, electrophysiology and molecular markers. The main differences in the organization of these interneuronal networks are summarized in terms of homologous and heterologous electrical coupling and mutual chemical inhibition. The role of connexin36 (Cx36) in forming neuronal electrical syn…

genetic structuresInterneuronGAP Junction GABAergic neuronsmusculoskeletal neural and ocular physiologyImmunoelectron microscopyGap junctionHippocampusSettore BIO/11 - Biologia MolecolareBiologySettore BIO/09 - Fisiologiamedicine.anatomical_structureElectrical Synapsesnervous systemCerebral cortexSettore BIO/10 - BiochimicaSynaptic plasticitymedicineGABAergicNeuroscience
researchProduct

The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation.

2016

Guanine-based purines (GBPs) have been recently proposed to be not only metabolic agents but also extracellular signaling molecules that regulate important functions in the central nervous system. In such way, GBPs-mediated neuroprotection, behavioral responses and neuronal plasticity have been broadly described in the literature. However, while a number of these functions (i.e., GBPs neurothophic effects) have been well-established, the molecular mechanisms behind these GBPs-dependent effects are still unknown. Furthermore, no plasma membrane receptors for GBPs have been described so far, thus GBPs are still considered orphan neuromodulators. Interestingly, an intricate and controversial f…

0301 basic medicineCell signalingAdenosineAdenosinaguanine-based purines; guanosine; neuroprotectionReviewBiologySettore BIO/09 - FisiologiaNeuroprotection03 medical and health sciences0302 clinical medicineguanine-based purinespurinergic receptorsmedicineGuanosine triphosphatasePharmacology (medical)ReceptorPharmacologyTrifosfat de guanosinasynaptic plasticityPurinergic receptorAdenosine; Guanine-based purines; Guanosine; Neuroprotection; Purinergic receptors; Synaptic plasticity; Pharmacology; Pharmacology (medical)Adenosine receptorAdenosineNeuromodulation (medicine)guanosine030104 developmental biologyBiochemistryPurinesadenosineSynaptic plasticityneuroprotectionNeurosciencePurinergic receptor030217 neurology & neurosurgeryGuanine-based purinemedicine.drugFrontiers in pharmacology
researchProduct

Guanine inhibits the growth of human glioma and melanoma cell lines by interacting with GPR23

2022

Guanine-based purines (GBPs) exert numerous biological effects at the central nervous system through putative membrane receptors, the existence of which is still elusive. To shed light on this question, we screened orphan and poorly characterized G protein-coupled receptors (GPRs), selecting those that showed a high purinoreceptor similarity and were expressed in glioma cells, where GBPs exerted a powerful antiproliferative effect. Of the GPRs chosen, only the silencing of GPR23, also known as lysophosphatidic acid (LPA) 4 receptor, counteracted GBP-induced growth inhibition in U87 cells. Guanine (GUA) was the most potent compound behind the GPR23-mediated effect, acting as the endpoint eff…

Pharmacologyantiproliferative effectspurine nucleoside phosphorylase (PNP)G protein-coupled receptor 23 (GPR23)glioma cell linesSettore BIO/14 - Farmacologiaguanine-based purines (GBPs)Pharmacology (medical)melanoma cell linesMelanomaguanine (GUA)lysophosphatidic acid (LPA)
researchProduct

Altered gastrointestinal motility in an animal model of Lesch-Nyhan disease.

2018

Mutations in the HGPRT1 gene, which encodes hypoxanthine-guanine phosphoribosyltransferase (HGprt), housekeeping enzyme responsible for recycling purines, lead to Lesch-Nyhan disease (LND). Clinical expression of LND indicates that HGprt deficiency has adverse effects on gastrointestinal motility. Therefore, we aimed to evaluate intestinal motility in HGprt knockout mice (HGprt(−)). Spontaneous and neurally evoked mechanical activity was recorded in vitro as changes in isometric tension in circular muscle strips of distal colon. HGprt(−) tissues showed a lower in amplitude spontaneous activity and atropine-sensitivity neural contraction compared to control mice. The responses to carbachol a…

0301 basic medicineAtropineMaleHypoxanthine PhosphoribosyltransferaseLesch-Nyhan SyndromeDopaminemedicine.disease_causeSettore BIO/09 - FisiologiaLesch-NyhanMice0302 clinical medicineEnzyme InhibitorsEvoked PotentialsMyenteric plexusHGprt deficient miceNeurotransmitter AgentsBrainNG-Nitroarginine Methyl EsterKnockout mouseCytokinesAcetylcholinemedicine.drugmedicine.medical_specialtyCarbacholTyrosine 3-MonooxygenaseColonMotilityMice TransgenicIn Vitro TechniquesEndocrine and Autonomic SystemArticleContractility03 medical and health sciencesCellular and Molecular NeuroscienceDopamineInternal medicinemedicineAnimalsCytokineEndocrine and Autonomic Systemsbusiness.industryMuscle SmoothBenzazepinesMice Inbred C57BLDisease Models Animal030104 developmental biologyEndocrinologyGene Expression RegulationHGprt enzymeFaceOxidative streCarbacholNeurology (clinical)Lipid PeroxidationbusinessGastrointestinal MotilityReactive Oxygen Species030217 neurology & neurosurgeryOxidative stressAutonomic neuroscience : basicclinical
researchProduct

Uncovering the Signaling Pathway behind Extracellular Guanine-Induced Activation of NO System: New Perspectives in Memory-Related Disorders

2018

Mounting evidence suggests that the guanine-based purines stand out as key player in cell metabolism and in several models of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Guanosine (GUO) and guanine (GUA) are extracellular signaling molecules derived from the breakdown of the correspondent nucleotide, GTP, and their intracellular and extracellular levels are regulated by the fine-tuned activity of two major enzymes, purine nucleoside phosphorylase (PNP) and guanine deaminase (GDA). Noteworthy, GUO and GUA, seem to play opposite roles in the modulation of cognitive functions, such as learning and memory. Indeed GUO, despite exerting neuroprotective, anti-apoptot…

0301 basic medicineMAPK/ERK pathwayCell signalingGuanineGuanosine03 medical and health scienceschemistry.chemical_compoundGuanine deaminase0302 clinical medicineCGMP; ERK; Guanine; L-NAME; Nitric oxide; SH-SY5Y cell line; Pharmacology; Pharmacology (medical)L-NAMEnitric oxideExtracellularguaninePharmacology (medical)Original ResearchPharmacologyChemistrylcsh:RM1-950Cell biologycGMPERKlcsh:Therapeutics. Pharmacology030104 developmental biologySignal transductionSH-SY5Y cell line030217 neurology & neurosurgeryIntracellularFrontiers in Pharmacology
researchProduct

Identification of calcium sensing receptor (CaSR) mRNA-expressing cells in normal and injured rat brain

2009

Calcium sensing receptor (CaSR), isolated for the first time from bovine and human parathyroid, is a G-protein-coupled receptors that has been involved in diverse physiological functions. At present a complete in vivo work on the identification of CaSR mRNA-expressing cells in the adult brain lacks and this investigation was undertaken in order to acquire more information on cell type expressing CaSR mRNA in the rat brain and to analyse for the first time its expression in different experimental models of brain injury. The expression of CaSR mRNAs was found mainly in scattered cells throughout almost all the brain regions. A double labeling analysis showed a colocalization of CaSR mRNA expr…

Malemedicine.medical_specialtyTime FactorsCentral nervous systemHippocampusCell CountSettore BIO/11 - Biologia MolecolareBiologySettore BIO/09 - Fisiologiachemistry.chemical_compoundSeizuresInternal medicineSettore BIO/10 - BiochimicaCaSRmedicineAnimalsRNA MessengerRats WistarIbotenic AcidMolecular BiologyIn Situ HybridizationNeuronsKainic AcidGeneral NeuroscienceDentate gyrusBrainColocalizationImmunohistochemistryRatsOligodendrogliamedicine.anatomical_structureEndocrinologynervous systemchemistryBrain InjuriesNeurogliaNeurology (clinical)Pyramidal cellCaSR; BrainCalcium sensing receptor (CaSR) isolated for the first time from bovine and human parathyroid is a G-protein-coupled receptors that has been involved in diverse physiological functions. At present a complete in vivo work on the identification of CaSR mRNA-expressing cells in the adult brain lacks and this investigation was undertaken in order to acquire more information on cell type expressing CaSR mRNA in the rat brain and to analyse for the first time its expression in different experimental models of brain injury. The expression of CaSR mRNAs was found mainly in scattered cells throughout almost all the brain regions. A double labeling analysis showed a colocalization of CaSR mRNA expression in neurons and oligodendrocytes whereas it was not found expressed both in the microglia and in astrocytes. One week after kainate-induced seizure CaSR was found in the injured CA3 region of the hippocampus and very interestingly it was found up-regulated in the neurons of CA1-CA2 and dentate gyrus. Similarly 1 week following ibotenic acid injection in the hippocampus CaSR mRNA expression was increased in oligodendrocytes both in the lesioned area and in the contralateral CA1-CA3 pyramidal cell layers and dentate gyrus. One week after needle-induced mechanical lesion an increase of labeled cells expressing CaSR mRNA was observed along the needle track. In conclusion the present results contribute to extend available data on cell type-expressing CaSR in normal and injured brain and could spur to understand the role of CaSR in repairing processes of brain injury.Receptors Calcium-SensingIbotenic acidDevelopmental BiologyAstrocyte
researchProduct

Expression of connexin36 in the adult and developing rat brain.

2000

The distribution of connexin36 (Cx36) in the adult rat brain and retina has been analysed at the protein (immunofluorescence) and mRNA (in situ hybridization) level. Cx36 immunoreactivity, consisting primarily of round or elongated puncta, is highly enriched in specific brain regions (inferior olive and the olfactory bulb), in the retina, in the anterior pituitary and in the pineal gland, in agreement with the high levels of Cx36 mRNA in the same regions. A lower density of immunoreactive puncta can be observed in several brain regions, where only scattered subpopulations of cells express Cx36 mRNA. By combining in situ hybridization for Cx36 mRNA with immunohistochemistry for a general neu…

MaleCerebellumPathologymedicine.medical_specialtygenetic structuresHippocampusIn situ hybridizationBiologyPineal GlandConnexinsmedicineAnimalsRNA MessengerEye ProteinsMolecular BiologyNeuronsBrain MappingGeneral NeuroscienceAge FactorsBrainGap JunctionsNuclear ProteinsImmunohistochemistryOlfactory bulbCell biologyRatsmedicine.anatomical_structureParvalbuminsnervous systemAnimals NewbornCerebral cortexCerebellar cortexPituitary Glandbiology.proteinsense organsNeurology (clinical)NeuronNeuNBiomarkersDevelopmental BiologyBrain research
researchProduct

Investigating the Role of Guanosine on Human Neuroblastoma Cell Differentiation and the Underlying Molecular Mechanisms

2021

Neuroblastoma arises from neural crest cell precursors failing to complete the process of differentiation. Thus, agents helping tumor cells to differentiate into normal cells can represent a valid therapeutic strategy. Here, we evaluated whether guanosine (GUO), a natural purine nucleoside, which is able to induce differentiation of many cell types, may cause the differentiation of human neuroblastoma SH-SY5Y cells and the molecular mechanisms involved. We found that GUO, added to the cell culture medium, promoted neuron-like cell differentiation in a time- and concentration-dependent manner. This effect was mainly due to an extracellular GUO action since nucleoside transporter inhibitors r…

NeuriteCellular differentiationGuanosinePurine nucleoside phosphorylaseRM1-950Nucleoside transporterSettore BIO/09 - Fisiologiachemistry.chemical_compoundneuroblastomaguanine guanosine guanylate cyclase heme oxygenase neuroblastoma protein kinase C purine nucleoside phosphorylase SH-SY5YdifferentiationNucleòsidsExtracellularPharmacology (medical)guaninePharmacologybiologyMarcadors tumoralsNucleosidesSH-SY5YdifferentiationBrief Research Reportheme oxygenasepurine nucleoside phosphorylaseCell biologyguanylate cyclaseguanosinechemistryCell cultureTumor markersSettore BIO/14 - Farmacologiabiology.proteinTherapeutics. PharmacologyNucleosideprotein kinase C
researchProduct

Cellular expression of connexins in the rat brain: neuronal localization, effects of kainate-induced seizures and expression in apoptotic neuronal ce…

2003

The identification of connexins (Cxs) expressed in neuronal cells represents a crucial step for understanding the direct communication between neurons and between neuron and glia. In the present work, using a double-labelling method combining in situ hybridization for Cx mRNAs with immunohistochemical detection for neuronal markers, we provide evidence that, among cerebral connexins (Cx26, Cx32, Cx36, Cx37, Cx40, Cx43, Cx45 and Cx47), only Cx45 and Cx36 mRNAs are localized in neuronal cells in both developing and adult rat brain. In order to establish whether connexin expression is influenced in vivo by abnormal neuronal activity, we examined the short-term effects of kainate-induced seizur…

MaleAgingTime FactorsgliaHippocampusConnexinbrain developmentKainate receptorApoptosisIn situ hybridizationBiologyConnexinsgap junctionbrain development; gap junction; gliaSeizuresTubulinmedicineExcitatory Amino Acid AgonistsIn Situ Nick-End LabelingPremovement neuronal activityAnimalsRNA MessengerOrganic ChemicalsRats WistarIn Situ HybridizationFluorescent DyesNeuronsMessenger RNAKainic AcidReverse Transcriptase Polymerase Chain ReactionGeneral NeuroscienceGap junctionBrainGene Expression Regulation DevelopmentalFluoresceinsImmunohistochemistryCell biologyRatsmedicine.anatomical_structurenervous systemAnimals NewbornPhosphopyruvate HydrataseAutoradiographysense organsNeuronNeuroscienceDensitometryThe European journal of neuroscience
researchProduct

Expression of Cx36 in mammalian neurons

2000

Cx36 is the first mammalian member of a novel subgroup of the connexin family, characterized by a long cytoplasmic loop, a peculiar gene structure and a preferential expression in cell types of neural origin. In the present review we summarize the evidence in favour of its predominant expression in neuronal cells in the mammalian central nervous system, such as results from experiments with specific neurotoxins and co-localization of Cx36 mRNA and a neuronal marker. We also report a detailed description of Cx36 mRNA distribution in the rat and human central nervous system by in situ hybridization and, for each brain region, we correlate the novel findings with previous morphological or func…

MammalsMessenger RNAGeneral NeuroscienceCentral nervous systemGap JunctionsGene ExpressionConnexinCell CommunicationMolecular neuroscienceIn situ hybridizationBiologyCell junctionConnexinsmedicine.anatomical_structureSynapsesGene expressionmedicineAnimalsHumanssense organsNeurology (clinical)NeuronEye ProteinsNeuroscienceBrain Research Reviews
researchProduct

Cellular localization of mGluR3 and mGluR5 mRNAs in normal and injured rat brain

2007

Abstract In order to understand the role of metabotropic glutamate receptors (mGluRs) in the brain, it is important to know how the mGluRs are differentially expressed among the different cell types. At present, the cellular expression of mGluR3 and mGluR5 has been mostly studied in terms of proteins with observations suggesting the expression of both mGluR3 and mGluR5 in neuronal and in glial cells. In order to verify the brain cell type-expressing mGluR3 and mGluR5 mRNAs, both in normal and injured brain, we performed a double labeling analysis, by in situ hybridization for mGluR3 or mGluR5 mRNA and immunohistochemistry for specific cellular markers. This approach allowed us to find mGluR…

MaleCell typeReceptor Metabotropic Glutamate 5In situ hybridizationHippocampal formationBiologyReceptors Metabotropic GlutamateSettore BIO/09 - Fisiologiamental disordersmedicineAnimalsRNA MessengerRats WistarMolecular BiologyCellular localizationIn Situ HybridizationNeuronsGeneral NeuroscienceGlutamate receptorBrainImmunohistochemistryOligodendrocyteCell biologyRatsmedicine.anatomical_structurenervous systemBrain InjuriesNeurogliaNeurology (clinical)NeuroscienceNeurogliaDevelopmental BiologyAstrocyte
researchProduct

Guanosine-Mediated Anxiolytic-Like Effect: Interplay with Adenosine A1 and A2A Receptors

2020

Acute or chronic administration of guanosine (GUO) induces anxiolytic-like effects, for which the adenosine (ADO) system involvement has been postulated yet without a direct experimental evidence. Thus, we aimed to investigate whether adenosine receptors (ARs) are involved in the GUO-mediated anxiolytic-like effect, evaluated by three anxiety-related paradigms in rats. First, we confirmed that acute treatment with GUO exerts an anxiolytic-like effect. Subsequently, we investigated the effects of pretreatment with ADO or A1R (CPA, CCPA) or A2AR (CGS21680) agonists 10 min prior to GUO on a GUO-induced anxiolytic-like effect. All the combined treatments blocked the GUO anxiolytic-like effect, …

LightPharmacologyAnxietySettore BIO/09 - FisiologiaHippocampuslcsh:Chemistrychemistry.chemical_compound0302 clinical medicineReceptorlcsh:QH301-705.5Spectroscopycaffeine0303 health sciencesBehavior AnimalRGeneral MedicineDarkness3. Good healthComputer Science ApplicationsadenosineCCPA[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]A<sub>1</sub>RCaffeineA1Rmedicine.drugReceptor Adenosine A2A1GuanosineCatalysisArticleInorganic Chemistry03 medical and health sciencesAmedicineAnimals[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Physical and Theoretical ChemistryBinding site2AMolecular Biology030304 developmental biologyDose-Response Relationship DrugReceptor Adenosine A1behaviorOrganic ChemistryCell MembraneAntagonistAdenosineAdenosine receptorRatsguanosineA<sub>2A</sub>Rlcsh:Biology (General)lcsh:QD1-999chemistryA2AR030217 neurology & neurosurgery
researchProduct

Can guanine-based purines be considered modulators of intestinal motility in rodents?

2010

Adenine-based purines play a pivotal role in the control of gastrointestinal motility in rodents. Recently, guanine-based purines have been also shown to exert extracellular effects in the central nervous system raising the possibility of the existence of distinct receptors for guanine-based purines. Thus, it seems likely to speculate that also guanine-based purines may play a role in the modulation of the intestinal contractility. Spontaneous and neurally-evoked mechanical activity was recorded in vitro as changes in isometric tension in circular muscle strips from mouse distal colon. Guanosine up to 3 mM or guanine up to 1 mM failed to affect the spontaneous mechanical activity, but reduc…

MalePurine(Mouse)Time FactorsGuanineGuanineColonGuanosineIn Vitro TechniquesPharmacologyBiologyCircular muscleSettore BIO/09 - FisiologiaAdenylyl cyclaseMicechemistry.chemical_compoundAnimalsPPADSPurine metabolismCholinergic contractionPharmacologyDose-Response Relationship DrugGuanosineBiological TransportBiochemistrychemistryCholinergicGastrointestinal MotilityNucleosideMuscle Contraction
researchProduct

Down-regulation of astroglial connexin expression after protracted seizures

2006

researchProduct