Search results for " normal distribution"
showing 10 items of 57 documents
The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies
2003
We consider the affine equivariant sign covariance matrix (SCM) introduced by Visuri et al. (J. Statist. Plann. Inference 91 (2000) 557). The population SCM is shown to be proportional to the inverse of the regular covariance matrix. The eigenvectors and standardized eigenvalues of the covariance, matrix can thus be derived from the SCM. We also construct an estimate of the covariance and correlation matrix based on the SCM. The influence functions and limiting distributions of the SCM and its eigenvectors and eigenvalues are found. Limiting efficiencies are given in multivariate normal and t-distribution cases. The estimates are highly efficient in the multivariate normal case and perform …
Inference based on the affine invariant multivariate Mann–Whitney–Wilcoxon statistic
2003
A new affine invariant multivariate analogue of the two-sample Mann–Whitney–Wilcoxon test based on the Oja criterion function is introduced. The associated affine equivariant estimate of shift, the multivariate Hodges-Lehmann estimate, is also considered. Asymptotic theory is developed to provide approximations for null distribution as well as for a sequence of contiguous alternatives to consider limiting efficiencies of the test and estimate. The theory is illustrated by an example. Hettmansperger et al. [9] considered alternative slightly different affine invariant extensions also based on the Oja criterion. The methods proposed in this paper are computationally more intensive, but surpri…
Estimates of Regression Coefficients Based on the Sign Covariance Matrix
2002
SummaryA new estimator of the regression parameters is introduced in a multivariate multiple-regression model in which both the vector of explanatory variables and the vector of response variables are assumed to be random. The affine equivariant estimate matrix is constructed using the sign covariance matrix (SCM) where the sign concept is based on Oja's criterion function. The influence function and asymptotic theory are developed to consider robustness and limiting efficiencies of the SCM regression estimate. The estimate is shown to be consistent with a limiting multinormal distribution. The influence function, as a function of the length of the contamination vector, is shown to be linea…
Holt–Winters Forecasting: An Alternative Formulation Applied to UK Air Passenger Data
2007
Abstract This paper provides a formulation for the additive Holt–Winters forecasting procedure that simplifies both obtaining maximum likelihood estimates of all unknowns, smoothing parameters and initial conditions, and the computation of point forecasts and reliable predictive intervals. The stochastic component of the model is introduced by means of additive, uncorrelated, homoscedastic and Normal errors, and then the joint distribution of the data vector, a multivariate Normal distribution, is obtained. In the case where a data transformation was used to improve the fit of the model, cumulative forecasts are obtained here using a Monte-Carlo approximation. This paper describes the metho…
Some links between conditional and coregionalized multivariate Gaussian Markov random fields
2020
Abstract Multivariate disease mapping models are attracting considerable attention. Many modeling proposals have been made in this area, which could be grouped into three large sets: coregionalization, multivariate conditional and univariate conditional models. In this work we establish some links between these three groups of proposals. Specifically, we explore the equivalence between the two conditional approaches and show that an important class of coregionalization models can be seen as a large subclass of the conditional approaches. Additionally, we propose an extension to the current set of coregionalization models with some new unexplored proposals. This extension is able to reproduc…
Multivariate nonparametric tests of independence
2005
New test statistics are proposed for testing whether two random vectors are independent. Gieser and Randles, as well as Taskinen, Kankainen, and Oja have introduced and discussed multivariate extensions of the quadrant test of Blomqvist. This article serves as a sequel to this work and presents new multivariate extensions of Kendall's tau and Spearman's rho statistics. Two different approaches are discussed. First, interdirection proportions are used to estimate the cosines of angles between centered observation vectors and between differences of observation vectors. Second, covariances between affine-equivariant multivariate signs and ranks are used. The test statistics arising from these …
On easily interpretable multivariate reference regions of rectangular shape
2011
Till now, multivariate reference regions have played only a marginal role in the practice of clinical chemistry and laboratory medicine. The major reason for this fact is that such regions are traditionally determined by means of concentration ellipsoids of multidimensional Gaussian distributions yielding reference limits which do not allow statements about possible outlyingness of measurements taken in specific diagnostic tests from a given patient or subject. As a promising way around this difficulty we propose to construct multivariate reference regions as p-dimensional rectangles or (in the one-sided case) rectangular half-spaces whose edges determine univariate percentile ranges of the…
A matrix-valued Bernoulli distribution
2006
AbstractMatrix-valued distributions are used in continuous multivariate analysis to model sample data matrices of continuous measurements; their use seems to be neglected for binary, or more generally categorical, data. In this paper we propose a matrix-valued Bernoulli distribution, based on the log-linear representation introduced by Cox [The analysis of multivariate binary data, Appl. Statist. 21 (1972) 113–120] for the Multivariate Bernoulli distribution with correlated components.
Regression models for multivariate ordered responses via the Plackett distribution
2008
AbstractWe investigate the properties of a class of discrete multivariate distributions whose univariate marginals have ordered categories, all the bivariate marginals, like in the Plackett distribution, have log-odds ratios which do not depend on cut points and all higher-order interactions are constrained to 0. We show that this class of distributions may be interpreted as a discretized version of a multivariate continuous distribution having univariate logistic marginals. Convenient features of this class relative to the class of ordered probit models (the discretized version of the multivariate normal) are highlighted. Relevant properties of this distribution like quadratic log-linear e…
Adaptive designs with correlated test statistics
2009
In clinical trials, the collected observations such as clustered data or repeated measurements are often correlated. As a consequence, test statistics in a multistage design are correlated. Adaptive designs were originally developed for independent test statistics. We present a general framework for two-stage adaptive designs with correlated test statistics. We show that the significance level for the Bauer-Köhne design is inflated for positively correlated test statistics from a bivariate normal distribution. The decision boundary for the second stage can be modified so that type one error is controlled. This general concept is expandable to other adaptive designs. In order to use these de…