Search results for " numerical analysis."
showing 10 items of 103 documents
Functional A Posteriori Error Estimates for Time-Periodic Parabolic Optimal Control Problems
2015
This article is devoted to the a posteriori error analysis of multiharmonic finite element approximations to distributed optimal control problems with time-periodic state equations of parabolic type. We derive a posteriori estimates of the functional type, which are easily computable and provide guaranteed upper bounds for the state and co-state errors as well as for the cost functional. These theoretical results are confirmed by several numerical tests that show high efficiency of the a posteriori error bounds. peerReviewed
Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results
2006
A numerical scheme is developed for solution of the Goursat problem for a class of nonlinear hyperbolic systems with an arbitrary number of independent variables. Convergence results are proved for this difference scheme. These results are applied to hyperbolic systems of differential-geometric origin, like the sine-Gordon equation describing the surfaces of the constant negative Gaussian curvature (K-surfaces). In particular, we prove the convergence of discrete K--surfaces and their Backlund transformations to their continuous counterparts. This puts on a firm basis the generally accepted belief (which however remained unproved untill this work) that the classical differential geometry of…
Numerical study of the transverse stability of the Peregrine solution
2020
We generalise a previously published approach based on a multi-domain spectral method on the whole real line in two ways: firstly, a fully explicit 4th order method for the time integration, based on a splitting scheme and an implicit Runge--Kutta method for the linear part, is presented. Secondly, the 1D code is combined with a Fourier spectral method in the transverse variable both for elliptic and hyperbolic NLS equations. As an example we study the transverse stability of the Peregrine solution, an exact solution to the one dimensional nonlinear Schr\"odinger (NLS) equation and thus a $y$-independent solution to the 2D NLS. It is shown that the Peregrine solution is unstable against all…
Numerical study of shock formation in the dispersionless Kadomtsev-Petviashvili equation and dispersive regularizations
2013
The formation of singularities in solutions to the dispersionless Kadomtsev-Petviashvili (dKP) equation is studied numerically for different classes of initial data. The asymptotic behavior of the Fourier coefficients is used to quantitatively identify the critical time and location and the type of the singularity. The approach is first tested in detail in 1+1 dimensions for the known case of the Hopf equation, where it is shown that the break-up of the solution can be identified with prescribed accuracy. For dissipative regularizations of this shock formation as the Burgers' equation and for dispersive regularizations as the Korteweg-de Vries equation, the Fourier coefficients indicate as …
Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains
2010
We use the scale of Besov spaces B^\alpha_{\tau,\tau}(O), \alpha>0, 1/\tau=\alpha/d+1/p, p fixed, to study the spatial regularity of the solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains O\subset R^d. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.
A new incremental method of computing the limit load in deformation plasticity models
2015
The aim of this paper is to introduce a new incremental procedure that can be used for numerical evaluation of the limit load. Existing incremental type methods are based on parametrization of the energy by the loading parameter $\zeta\in[0,\zeta_{lim})$, where $\zeta_{lim}$ is generally unknown. In the new method, the incremental procedure is operated in terms of an inverse mapping and the respective parameter $\alpha$ is changing in the interval $(0,+\infty)$. Theoretically, in each step of this algorithm, we obtain a guaranteed lower bound of $\zeta_{lim}$. Reduction of the problem to a finite element subspace associated with a mesh $\mathcal T_h$ generates computable bound $\zeta_{lim,h…
Improved Global-Local Method for Ultrasonic Guided Wave Scattering Predictions in Composite Waveguides and Defects
2023
Abstract As structures increase in complexity, in the use of high-performing materials and designs, their health assessment becomes increasingly challenging. Ultrasonic guided waves (UGWs) have shown to be very promising in the inspection of large (i.e. aerospace components) attenuating (i.e. composite materials) structures and have been successfully employed for damage detection in a variety of fields. The intrinsic complex nature of UGWs, due to their dispersive behavior, combined with the structural complexity of the applications, though, makes the interpretation of UGW inspections very challenging. Numerical simulations of UGW propagation become crucial to this end and have been address…
Existence and uniqueness of nontrivial collocation solutions of implicitly linear homogeneous Volterra integral equations
2011
We analyze collocation methods for nonlinear homogeneous Volterra-Hammerstein integral equations with non-Lipschitz nonlinearity. We present different kinds of existence and uniqueness of nontrivial collocation solutions and we give conditions for such existence and uniqueness in some cases. Finally we illustrate these methods with an example of a collocation problem, and we give some examples of collocation problems that do not fit in the cases studied previously.
Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange-Galerkin method, Part II: A linear scheme
2017
This is the second part of our error analysis of the stabilized Lagrange-Galerkin scheme applied to the Oseen-type Peterlin viscoelastic model. Our scheme is a combination of the method of characteristics and Brezzi-Pitk\"aranta's stabilization method for the conforming linear elements, which leads to an efficient computation with a small number of degrees of freedom especially in three space dimensions. In this paper, Part II, we apply a semi-implicit time discretization which yields the linear scheme. We concentrate on the diffusive viscoelastic model, i.e. in the constitutive equation for time evolution of the conformation tensor a diffusive effect is included. Under mild stability condi…
Laminar flow through fractal porous materials: the fractional-order transport equation
2015
Abstract The anomalous transport of a viscous fluid across a porous media with power-law scaling of the geometrical features of the pores is dealt with in the paper. It has been shown that, assuming a linear force–flux relation for the motion in a porous solid, then a generalized version of the Hagen–Poiseuille equation has been obtained with the aid of Riemann–Liouville fractional derivative. The order of the derivative is related to the scaling property of the considered media yielding an appropriate mechanical picture for the use of generalized fractional-order relations, as recently used in scientific literature.