6533b7d3fe1ef96bd1260173
RESEARCH PRODUCT
Functional A Posteriori Error Estimates for Time-Periodic Parabolic Optimal Control Problems
Sergey RepinUlrich LangerMonika Wolfmayrsubject
Mathematical optimizationControl and OptimizationMathematicsofComputing_NUMERICALANALYSISFinite element approximations010103 numerical & computational mathematicsType (model theory)01 natural sciencesparabolic time-periodic optimal control problemsError analysisFOS: MathematicsApplied mathematicsMathematics - Numerical AnalysisNumerical testsfunctional a posteriori error estimates0101 mathematicsMathematics - Optimization and Control49N20 35Q61 65M60 65F08Mathematicsta113Time periodicta111Numerical Analysis (math.NA)State (functional analysis)Optimal controlComputer Science Applications010101 applied mathematicsOptimization and Control (math.OC)multiharmonic finite element methodsSignal ProcessingA priori and a posterioriAnalysisdescription
This article is devoted to the a posteriori error analysis of multiharmonic finite element approximations to distributed optimal control problems with time-periodic state equations of parabolic type. We derive a posteriori estimates of the functional type, which are easily computable and provide guaranteed upper bounds for the state and co-state errors as well as for the cost functional. These theoretical results are confirmed by several numerical tests that show high efficiency of the a posteriori error bounds. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2015-11-18 | Numerical Functional Analysis and Optimization |