Search results for " parametri"

showing 10 items of 171 documents

Laser driven X-ray parametric amplification in neutral gases—a new brilliant light source in the XUV

2011

Abstract In this paper we present the experimental setup and results showing a new type of strong-field parametric amplification of high-order harmonic radiation. With a simple semi-classical model, we can identify the most important experimental parameters, the spectral range and the small signal gain in gases. Using a single stage amplifier, a small signal gain of 8000 has been obtained in argon for the spectral range of 40–50 eV, using 350 fs, 7 mJ pulses at 1.05 μm. An outlook for an experiment employing a double stage gas system will be given.

PhysicsNuclear and High Energy PhysicsRange (particle radiation)Argonbusiness.industryAmplifierX-raychemistry.chemical_elementLaserOptical parametric amplifierlaw.inventionOpticschemistrylawExtreme ultravioletbusinessInstrumentationParametric statisticsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Stabilizing and controlling domain walls and dark-ring cavity solitons.

2009

We demonstrate two alternative techniques for controlling and stabilizing domain walls (DW) in phase-sensitive, nonlinear optical resonators. The first of them uses input pumps with spatially modulated phase and can be applied also to dark-ring cavity solitons. An optical memory based on the latter is demonstrated. Here the physical mechanism of control relies on the advection caused to any feature by the phase gradients. The second technique uses a plane wave input pump with holes of null intensity across its transverse plane, which are able to capture DWs. Here the physical mechanism of control is of topological nature. When distributed as a regular array, these holes delimit spatial opti…

PhysicsNull (radio)business.industryPlane wavePhase (waves)Physics::OpticsOptical parametric amplifierAtomic and Molecular Physics and Opticslaw.inventionTransverse planeResonatorOpticslawOptical cavityOptical parametric oscillatorbusinessOptics express
researchProduct

Squeezed Light Generation via Spatial Symmetry Breaking

2009

The spontaneous spatial symmetry breaking occurring in the transverse section of the light beam emitted by a degenerate optical parametric oscillator is shown to give rise to perfectly squeezed light. Such phenomenon occurs at any operating conditions, unlike conventional squeezing.

PhysicsOptical pumpingTransverse planebusiness.industryQuantum mechanicsDegenerate energy levelsOptical parametric oscillatorLight beamQuantum PhysicsSymmetry breakingPhotonicsbusinessSqueezed coherent state2009 IEEE/LEOS Winter Topicals Meeting Series
researchProduct

Quadratic solitons in 2D nonlinear photonic crystals

2007

We report on the first observation of spatial solitons in a 2D nonlinear photonic crystal. The experiments were performed in an hexagonally poled LiNbO3 waveguide designed for second harmonic generation from ~1.55 micron.

PhysicsParametric spatial solitonbusiness.industryLithium niobateSecond-harmonic generationNonlinear opticsPhysics::OpticsLithium niobateWaveguide (optics)Optical pumpingNonlinear systemchemistry.chemical_compoundOpticschemistryNonlinear optics parametric processeNonlinear photonic crystalOptoelectronicsbusinessNonlinear Sciences::Pattern Formation and SolitonsPhotonic crystal
researchProduct

Timing Control of a Heralded Single Photon Emission

2012

We experimentally demonstrate controlling the emission timing of a heralded single photon from a non-degenerate optical parametric oscillator, by placing another quickly tunable cavity at the exit as a shutter.

PhysicsPhotonbusiness.industryPhysics::OpticsQuantum information processingSingle photon emissionOpticsHomodyne detectionSpontaneous parametric down-conversionShutterOptical parametric oscillatorOptoelectronicsbusinessQuantum computerFrontiers in Optics 2012/Laser Science XXVIII
researchProduct

Generating highly squeezed Hybrid Laguerre-Gauss modes in large-Fresnel-number Degenerate Optical Parametric Oscillators

2008

We theoretically describe the quantum properties of a large Fresnel number degenerate optical parametric oscillator with spherical mirrors that is pumped by a Gaussian beam. The resonator is tuned so that the resonance frequency of a given transverse mode family coincides with the down-converted frequency. After demonstrating that only the lower orbital angular momentum (OAM) Laguerre-Gauss modes are amplified above threshold, we focus on the quantum properties of the rest of (classically empty) modes. We find that combinations of opposite OAM (Hybrid Laguerre-Gauss modes) can exhibit arbitrary large quadrature squeezing for the lower OAM non amplified modes.

PhysicsQuantum PhysicsDegenerate energy levelsPhysics::OpticsFOS: Physical sciencesAtomic and Molecular Physics and OpticsAzimuthal quantum numberParametric processTotal angular momentum quantum numberQuantum mechanicsAngular momentum couplingOptical parametric oscillatorOrbital angular momentum of lightQuantum Physics (quant-ph)Gaussian beam
researchProduct

Impact of anisotropy on the noncritical squeezing properties of two-transverse-mode optical parametric oscillators

2013

In a series of articles we studied the quantum properties of a degenerate optical parametric oscillator tuned to the first family of transverse modes at the subharmonic. We found that, for a cavity having rotational symmetry respect to the optical axis, a TEM$_{10}$ mode with an arbitrary orientation in the transverse plane is emitted above threshold. We proved then that quantum noise induces a random rotation of this bright TEM$_{10}$ mode in the transverse plane, while the mode orthogonal to it, the so-called dark mode, has perfect quadrature squeezing irrespective of the distance to threshold (noncritical squeezing). This result was linked to the spontaneous rotational symmetry breaking …

PhysicsQuantum PhysicsDegenerate energy levelsQuantum noiseRotational symmetryFOS: Physical sciences01 natural sciencesAtomic and Molecular Physics and OpticsÒptica quànticaTransverse mode010309 opticsOptical axisTransverse planeQuantum mechanics0103 physical sciencesOptical parametric oscillator010306 general physicsAnisotropyQuantum Physics (quant-ph)
researchProduct

Heralded creation of photonic qudits from parametric down conversion using linear optics

2017

We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions of two-mode optical states with a fixed total photon number $n$ based on weakly squeezed two-mode squeezed state resources (obtained via weak parametric down conversion), linear optics, and photon detection. Arbitrary $d$-level (qudit) states can be created this way where $d=n+1$. Furthermore, we experimentally demonstrate our scheme for $n=2$. The resulting qutrit states are characterized via optical homodyne tomography. We also discuss possible extensions to more than two modes concluding that, in general, our approach ceases to work in this case. For illustration and with regards to pos…

PhysicsQuantum PhysicsPhotonbusiness.industryFOS: Physical sciencesQuantum Physics01 natural sciences010309 opticsSuperposition principleOpticsSpontaneous parametric down-conversionQuantum error correctionQuantum mechanicsQubit0103 physical sciencesQutrit010306 general physicsbusinessQuantum Physics (quant-ph)QuantumSqueezed coherent state
researchProduct

Noncritically squeezed light via spontaneous rotational symmetry breaking.

2007

We theoretically address squeezed light generation through the spontaneous breaking of the rotational invariance occuring in a type I degenerate optical parametric oscillator (DOPO) pumped above threshold. We show that a DOPO with spherical mirrors, in which the signal and idler fields correspond to first order Laguerre-Gauss modes, produces a perfectly squeezed vacuum with the shape of a Hermite-Gauss mode, within the linearized theory. This occurs at any pumping level above threshold, hence the phenomenon is non-critical. Imperfections of the rotational symmetry, due e.g. to cavity anisotropy, are shown to have a small impact, hence the result is not singular.

PhysicsQuantum PhysicsSpontaneous symmetry breakingDegenerate energy levelsRotational symmetryFOS: Physical sciencesPhysics::OpticsGeneral Physics and AstronomyCurved mirrorExplicit symmetry breakingQuantum mechanicsOptical parametric oscillatorAtomic physicsQuantum Physics (quant-ph)AnisotropySqueezed coherent statePhysical review letters
researchProduct

Spontaneous symmetry breaking as a resource for noncritically squeezed light

2010

[EN] In the last years we have proposed the use of the mechanism of spontaneous symmetry breaking with the purpose of generating perfect quadrature squeezing. Here we review previous work dealing with spatial (translational and rotational) symmetries, both on optical parametric oscillators and four-wave mixing cavities, as well as present new results. We then extend the phenomenon to the polarization state of the signal field, hence introducing spontaneous polarization symmetry breaking. Finally we propose a Jaynes-Cummings model in which the phenomenon can be investigated at the singlephoton-pair level in a non-dissipative case, with the purpose of understanding it from a most fundamental …

PhysicsQuantum PhysicsSqueezed statesSpontaneous symmetry breakingFOS: Physical sciencesOptical parametric oscillatorsSignal fieldSymmetry breakingPolarization (waves)Spontaneous polarizationQuantum mechanicsFISICA APLICADAHomogeneous spaceFour-wave mixing cavitiesSymmetry breakingQuantum Physics (quant-ph)Squeezed coherent stateParametric statistics
researchProduct