6533b823fe1ef96bd127f730

RESEARCH PRODUCT

Noncritically squeezed light via spontaneous rotational symmetry breaking.

Eugenio RoldánCarlos Navarrete-benllochGerma~¡n J. De Valcárcel

subject

PhysicsQuantum PhysicsSpontaneous symmetry breakingDegenerate energy levelsRotational symmetryFOS: Physical sciencesPhysics::OpticsGeneral Physics and AstronomyCurved mirrorExplicit symmetry breakingQuantum mechanicsOptical parametric oscillatorAtomic physicsQuantum Physics (quant-ph)AnisotropySqueezed coherent state

description

We theoretically address squeezed light generation through the spontaneous breaking of the rotational invariance occuring in a type I degenerate optical parametric oscillator (DOPO) pumped above threshold. We show that a DOPO with spherical mirrors, in which the signal and idler fields correspond to first order Laguerre-Gauss modes, produces a perfectly squeezed vacuum with the shape of a Hermite-Gauss mode, within the linearized theory. This occurs at any pumping level above threshold, hence the phenomenon is non-critical. Imperfections of the rotational symmetry, due e.g. to cavity anisotropy, are shown to have a small impact, hence the result is not singular.

10.1103/physrevlett.100.203601https://pubmed.ncbi.nlm.nih.gov/18518533