0000000000041157
AUTHOR
Carlos Navarrete-benlloch
Spatial localization and pattern formation in discrete optomechanical cavities and arrays
We investigate theoretically the generation of nonlinear dissipative structures in optomechanical (OM) systems containing discrete arrays of mechanical resonators. We consider both hybrid models in which the optical system is a continuous multimode field, as it would happen in an OM cavity containing an array of micro-mirrors, and also fully discrete models in which each mechanical resonator interacts with a single optical mode, making contact with Ludwig & Marquardt [Phys. Rev. Lett. 101, 073603 (2013)]. Also, we study the connections between both types of models and continuous OM models. While all three types of models merge naturally in the limit of a large number of densely distribu…
Noncritical generation of nonclassical frequency combs via spontaneous rotational symmetry breaking
Synchronously pumped optical parametric oscillators (SPOPOs) are optical cavities containing a nonlinear crystal capable of down-converting a frequency comb to lower frequencies. These have received a lot of attention lately, because their intrinsic multimode nature makes them compact sources of quantum correlated light with promising applications in modern quantum information technologies. In this work we show that SPOPOs are also capable of accessing the challenging but interesting regime where spontaneous symmetry breaking plays a crucial role in the quantum properties of the emitted light, difficult to access with any other nonlinear optical cavity. Apart from opening the possibility of…
Creating highly squeezed vacua in hybrid Laguerre-Gauss modes
In this communication we study the above threshold quantum properties of a degenerate optical parametric oscillator (DOPO) tuned to a given transverse mode family at the signal frequency. We will show that under this configuration DOPOs are versatile sources of nonclassical light, in which one could be able to generate highly squeezed vacua with the non trivial shapes of Hybrid Laguerre-Gauss modes.
Generating highly squeezed Hybrid Laguerre-Gauss modes in large-Fresnel-number Degenerate Optical Parametric Oscillators
We theoretically describe the quantum properties of a large Fresnel number degenerate optical parametric oscillator with spherical mirrors that is pumped by a Gaussian beam. The resonator is tuned so that the resonance frequency of a given transverse mode family coincides with the down-converted frequency. After demonstrating that only the lower orbital angular momentum (OAM) Laguerre-Gauss modes are amplified above threshold, we focus on the quantum properties of the rest of (classically empty) modes. We find that combinations of opposite OAM (Hybrid Laguerre-Gauss modes) can exhibit arbitrary large quadrature squeezing for the lower OAM non amplified modes.
Simulating quantum-optical phenomena with optical lattices
Cold atoms trapped in optical lattices have been proved to be very versatile quantum systems in which a large class of many-body condensed-matter Hamiltonians can be simulated [1].
Noncritical quadrature squeezing in two-transverse-mode optical parametric oscillators
In this article we explore the quantum properties of a degenerate optical parametric oscillator when it is tuned to the first family of transverse modes at the down-converted frequency. Recently we found [C. Navarrete-Benlloch et al., Phys. Rev. Lett. 100, 203601 (2008)] that above threshold a TEM${}_{10}$ mode following a random rotation in the transverse plane emerges in this system (we denote it as the bright mode), breaking thus its rotational invariance. Then, owing to the mode orientation being undetermined, we showed that the phase quadrature of the transverse mode orthogonal to this one (denoted as the dark mode) is perfectly squeezed at any pump level and without an increase in the…
Active locking and entanglement in type II optical parametric oscillators
Type II optical parametric oscillators are amongst the highest-quality sources of quantum-correlated light. In particular, when pumped above threshold, such devices generate a pair of bright orthogonally-polarized beams with strong continuous-variable entanglement. However, these sources are of limited practical use, because the entangled beams emerge with different frequencies and a diffusing phase-difference. It has been proven that the use of an internal wave-plate coupling the modes with orthogonal polarization is capable of locking the frequencies of the emerging beams to half the pump frequency, as well as reducing the phase-difference diffusion, at the expense of reducing the entangl…
Impact of anisotropy on the noncritical squeezing properties of two-transverse-mode optical parametric oscillators
In a series of articles we studied the quantum properties of a degenerate optical parametric oscillator tuned to the first family of transverse modes at the subharmonic. We found that, for a cavity having rotational symmetry respect to the optical axis, a TEM$_{10}$ mode with an arbitrary orientation in the transverse plane is emitted above threshold. We proved then that quantum noise induces a random rotation of this bright TEM$_{10}$ mode in the transverse plane, while the mode orthogonal to it, the so-called dark mode, has perfect quadrature squeezing irrespective of the distance to threshold (noncritical squeezing). This result was linked to the spontaneous rotational symmetry breaking …
Squeezing induced by spontaneous rotational symmetry breaking
In this communication we study in depth the phenomenon of quadrature squeezing generated via spontaneous rotational symmetry breaking discussed for the first time in [1]. The idea can be put in short as follows. Consider a degenerate optical parametric oscillator (DOPO) tuned to the first family of transverse modes at the signal frequency, and having perfectly spherical mirrors. When pumped above threshold with a Gaussian beam and within a classical description, it is easy to show that a TEM 10 mode with an arbitrary orientation (measured by θ at Fig. 1) emerges at the subharmonic, hence breaking the rotational symmetry of the system in the transverse plane. Quantum effects are then quite i…
Noncritically squeezed light via spontaneous rotational symmetry breaking.
We theoretically address squeezed light generation through the spontaneous breaking of the rotational invariance occuring in a type I degenerate optical parametric oscillator (DOPO) pumped above threshold. We show that a DOPO with spherical mirrors, in which the signal and idler fields correspond to first order Laguerre-Gauss modes, produces a perfectly squeezed vacuum with the shape of a Hermite-Gauss mode, within the linearized theory. This occurs at any pumping level above threshold, hence the phenomenon is non-critical. Imperfections of the rotational symmetry, due e.g. to cavity anisotropy, are shown to have a small impact, hence the result is not singular.
Spontaneous symmetry breaking as a resource for noncritically squeezed light
[EN] In the last years we have proposed the use of the mechanism of spontaneous symmetry breaking with the purpose of generating perfect quadrature squeezing. Here we review previous work dealing with spatial (translational and rotational) symmetries, both on optical parametric oscillators and four-wave mixing cavities, as well as present new results. We then extend the phenomenon to the polarization state of the signal field, hence introducing spontaneous polarization symmetry breaking. Finally we propose a Jaynes-Cummings model in which the phenomenon can be investigated at the singlephoton-pair level in a non-dissipative case, with the purpose of understanding it from a most fundamental …
Floquet theory for temporal correlations and spectra in time-periodic open quantum systems: Application to squeezed parametric oscillation beyond the rotating-wave approximation
Open quantum systems can display periodic dynamics at the classical level either due to external periodic modulations or to self-pulsing phenomena typically following a Hopf bifurcation. In both cases, the quantum fluctuations around classical solutions do not reach a quantum-statistical stationary state, which prevents adopting the simple and reliable methods used for stationary quantum systems. Here we put forward a general and efficient method to compute two-time correlations and corresponding spectral densities of time-periodic open quantum systems within the usual linearized (Gaussian) approximation for their dynamics. Using Floquet theory we show how the quantum Langevin equations for…
Nonlinear optical Galton board
We generalize the concept of optical Galton board (OGB), first proposed by Bouwmeester et al. {[}Phys. Rev. A \textbf{61}, 013410 (2000)], by introducing the possibility of nonlinear self--phase modulation on the wavefunction during the walker evolution. If the original Galton board illustrates classical diffusion, the OGB, which can be understood as a grid of Landau--Zener crossings, illustrates the influence of interference on diffusion, and is closely connected with the quantum walk. Our nonlinear generalization of the OGB shows new phenomena, the most striking of which is the formation of non-dispersive pulses in the field distribution (soliton--like structures). These exhibit a variety…
General Linearized Theory of Quantum Fluctuations around Arbitrary Limit Cycles
The theory of Gaussian quantum fluctuations around classical steady states in nonlinear quantum-optical systems (also known as standard linearization) is a cornerstone for the analysis of such systems. Its simplicity, together with its accuracy far from critical points or situations where the nonlinearity reaches the strong coupling regime, has turned it into a widespread technique, which is the first method of choice in most works on the subject. However, such a technique finds strong practical and conceptual complications when one tries to apply it to situations in which the classical long-time solution is time dependent, a most prominent example being spontaneous limit-cycle formation. H…
Dissipative structures in optomechanical cavities
Motivated by the increasing interest in the properties of multimode optomechanical devices, here we study a system in which a driven mode of a large-area optical cavity is despersively coupled to a deformable mechanical element. Two different models naturally appear in such scenario, for which we predict the formation of periodic patterns, localized structures (cavity solitons), and domain walls, among other complex nonlinear phenomena. Further, we propose a realistic design based on intracavity membranes where our models can be studied experimentally. Apart from its relevance to the field of nonlinear optics, the results put forward here are a necessary step towards understanding the quant…
Noncritical quadrature squeezing through spontaneous polarization symmetry breaking
We discuss the possibility of generating noncritical quadrature squeezing by spontaneous polarization symmetry breaking. We first consider Type II frequency-degenerate optical parametric oscillators but discard them for a number of reasons. Then we propose a four-wave-mixing cavity, in which the polarization of the output mode is always linear but has an arbitrary orientation. We show that in such a cavity, complete noise suppression in a quadrature of the output field occurs, irrespective of the parameter values.
Light polarization measurements in tests of macrorealism
According to the world view of macrorealism, the properties of a given system exist prior to and independent of measurement, which is incompatible with quantum mechanics. Leggett and Garg put forward a practical criterion capable of identifying violations of macrorealism, and so far experiments performed on microscopic and mesoscopic systems have always ruled out in favor of quantum mechanics. However, a macrorealist can always assign the cause of such violations to the perturbation that measurements effect on such small systems, and hence a definitive test would require using non-invasive measurements, preferably on macroscopic objects, where such measurements seem more plausible. However,…