Search results for " partial D"
showing 9 items of 169 documents
From Particle Systems to Partial Differential Equations International Conference, Particle Systems and PDEs VI, VII and VIII, 2017-2019
2021
This book includes the joint proceedings of the International Conference on Particle Systems and PDEs VI, VII and VIII. Particle Systems and PDEs VI was held in Nice, France, in November/December 2017, Particle Systems and PDEs VII was held in Palermo, Italy, in November 2018, and Particle Systems and PDEs VIII was held in Lisbon, Portugal, in December 2019. Most of the papers are dealing with mathematical problems motivated by different applications in physics, engineering, economics, chemistry and biology. They illustrate methods and topics in the study of particle systems and PDEs and their relation. The book is recommended to probabilists, analysts and to those mathematicians in general…
Dictamen profesional sobre la fusión y escisión como extrategias alternativas en un grupo de sociedades
2021
This work is a professional, legal opinion which sets out two alternative strategies (merger by absorption and partial demerger) in order to bring together the different areas of activity of the various companies in a group of companies. The aim is to provide solutions to the questions raised by customers and, therefore, to set out clearly and simply the procedure to be followed in each of the strategies, weighing up the advantages and disadvantages from each of them
Local regularity estimates for general discrete dynamic programming equations
2022
We obtain an analytic proof for asymptotic H\"older estimate and Harnack's inequality for solutions to a discrete dynamic programming equation. The results also generalize to functions satisfying Pucci-type inequalities for discrete extremal operators. Thus the results cover a quite general class of equations.
An evolutionary Haar-Rado type theorem
2021
AbstractIn this paper, we study variational solutions to parabolic equations of the type $$\partial _t u - \mathrm {div}_x (D_\xi f(Du)) + D_ug(x,u) = 0$$ ∂ t u - div x ( D ξ f ( D u ) ) + D u g ( x , u ) = 0 , where u attains time-independent boundary values $$u_0$$ u 0 on the parabolic boundary and f, g fulfill convexity assumptions. We establish a Haar-Rado type theorem: If the boundary values $$u_0$$ u 0 admit a modulus of continuity $$\omega $$ ω and the estimate $$|u(x,t)-u_0(\gamma )| \le \omega (|x-\gamma |)$$ | u ( x , t ) - u 0 ( γ ) | ≤ ω ( | x - γ | ) holds, then u admits the same modulus of continuity in the spatial variable.
Variational parabolic capacity
2015
We establish a variational parabolic capacity in a context of degenerate parabolic equations of $p$-Laplace type, and show that this capacity is equivalent to the nonlinear parabolic capacity. As an application, we estimate the capacities of several explicit sets.
Stationary and Nontationary Response Probability Density Function of a Beam under Poisson White Noise
2011
In this paper an approximate explicit probability density function for the analysis of external oscillations of a linear and geometric nonlinear simply supported beam driven by random pulses is proposed. The adopted impulsive loading model is the Poisson White Noise , that is a process having Dirac’s delta occurrences with random intensity distributed in time according to Poisson’s law. The response probability density function can be obtained solving the related Kolmogorov-Feller (KF) integro-differential equation. An approximated solution, using path integral method, is derived transforming the KF equation to a first order partial differential equation. The method of characteristic is the…
A Method of Conversion of some Coefficient Inverse Parabolic Problems to a Unified Type of Integral-Differential Equation
2011
Coefficient inverse problems are reformulated to a unified integral differential equation. The presented method of conversion of the considered inverse problems to a unified Volterra integral-differential equation gives an opportunity to distribute the acquired results also to analogous inverse problems for non-linear parabolic equations of different types.
Itô-Stratonovitch Formula for the Wave Equation on a Torus
2010
We give an Ito-Stratonovitch formula for the wave equation on a torus, where we have no stochastic process associated to this partial differential equation. This gives a generalization of the classical Ito-Stratonovitch equation for diffusion in semi-group theory established by ourself in [18], [20].
A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne-Weinberger inequality
2015
We consider evolutionary reaction-diffusion problem with mixed Dirichlet--Robin boundary conditions. For this class of problems, we derive two-sided estimates of the distance between any function in the admissible energy space and exact solution of the problem. The estimates (majorants and minorants) are explicitly computable and do not contain unknown functions or constants. Moreover, it is proved that the estimates are equivalent to the energy norm of the deviation from the exact solution.