Search results for " planetary"
showing 10 items of 5408 documents
Slender Ca II H fibrils mapping magnetic fields in the low solar chromosphere
2017
S. Jafarzadeh et. al.
Diving into exoplanets: Are water seas the most common?
2019
One of the basic tenets of exobiology is the need for a liquid substratum in which life can arise, evolve, and develop. The most common version of this idea involves the necessity of water to act as such a substratum, both because that is the case on Earth and because it seems to be the most viable liquid for chemical reactions that lead to life. Other liquid media that could harbor life, however, have occasionally been put forth. In this work, we investigate the relative probability of finding superficial seas on rocky worlds that could be composed of nine different, potentially abundant, liquids, including water. We study the phase space size of habitable zones defined for those substance…
Plasma sloshing in pulse-heated solar and stellar coronal loops
2016
There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here hydrodynamic loop modeling shows that several large amplitude oscillations (~ 20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter that the sound crossing time of the flaring loop. The reason is that the plasma has not enough time to reach pressure equilibrium during the heating and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these os…
Morphological Properties of Slender Ca ${\rm{II}}$ H Fibrils Observed by Sunrise II
2017
R. Gafeira et. al.
Bright Hot Impacts by Erupted Fragments Falling Back on the Sun: Magnetic Channelling
2016
Dense plasma fragments were observed to fall back on the solar surface by the Solar Dynamics Observatory after an eruption on 7 June 2011, producing strong EUV brightenings. Previous studies investigated impacts in regions of weak magnetic field. Here we model the $\sim~300$ km/s impact of fragments channelled by the magnetic field close to active regions. In the observations, the magnetic channel brightens before the fragment impact. We use a 3D-MHD model of spherical blobs downfalling in a magnetized atmosphere. The blob parameters are constrained from the observation. We run numerical simulations with different ambient density and magnetic field intensity. We compare the model emission i…
A tale of two emergences: Sunrise II observations of emergence sites in a solar active region
2017
R. Centeno et. al.
Magnetic shuffling of coronal downdrafts
2017
Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have been recently addressed from an observation after a solar eruption. We study the possible back-effect of the magnetic field on the propagation of confined flows. We compare two 3D MHD simulations of dense supersonic plasma blobs downfalling along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned to the magnetic field and the field is weaker. The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merged by the chaotic shuffling of …
Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data
2012
River floodplains in the Netherlands serve as water storage areas, while they also have the function of nature rehabilitation areas. Floodplain vegetation is therefore subject to natural processes of vegetation succession. At the same time, vegetation encroachment obstructs the water flow into the floodplains and increases the flood risk for the hinterland. Spaceborne pointable imaging spectroscopy has the potential to quantify vegetation density on the basis of leaf area index (LAI) from a desired view zenith angle. In this respect, hyperspectral pointable CHRIS data were linked to the ray tracing canopy reflectance model FLIGHT to retrieve vegetation density estimates over a heterogeneous…
Astrometric detection of a low-mass companion orbiting the star AB Doradus
1997
International audience; We report submilliarcsecond-precise astrometric measurements for the late-type star AB Doradus via a combination of VLBI (very long baseline interferometry) and HIPPARCOS data. Our astrometric analysis results in the precise determination of the kinematics of this star, which reveals an orbital motion readily explained as caused by gravitational interaction with a low-mass companion. From the portion of the reÑex orbit covered by our data and using a revised mass of the primary star (0.76 M _) derived from our new value of the parallax (66.3 mas \ n \ 67.2 mas), we Ðnd the dynamical mass of the newly discovered companion to be between 0.08 and 0.11 If accurate photom…
On the timing between terrestrial gamma ray flashes, radio atmospherics, and optical lightning emission
2017
On 25 October 2012 the Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) and the Tropical Rainfall Measuring Mission (TRMM) satellites passed over a thunderstorm on the coast of Sri Lanka. RHESSI observed a terrestrial gamma ray flash (TGF) originating from this thunderstorm. Optical measurements of the causative lightning stroke were made by the lightning imaging sensor (LIS) on board TRMM. The World Wide Lightning Location Network (WWLLN) detected the very low frequency (VLF) radio emissions from the lightning stroke. The geolocation from WWLLN, which we also assume is the TGF source location, was in the convective core of the cloud. By using new information about both RHESSI a…