Search results for " planetary"

showing 10 items of 5408 documents

Analysing the effect of land use and vegetation cover on soil infiltration in three contrasting environments in northeast Spain

2017

Este estudio presenta el análisis conjunto de la información obtenida a partir de 195 ensayos de infiltración en el campo, que fueron realizados mediante dispositivos de doble anillo. Los experimentos se realizaron en 20 situaciones contrastadas de usos del suelo, los cuales se encuentran distribuidos en tres contextos geográficos (costa NE de Cataluña, monte bajo del sector central del valle del Ebro y montaña media de la vertiente Sur del Pirineo central). El objetivo de esta investigación es determinar los factores más importantes que explican la variabilidad de la infiltración: uso del suelo, tipo de cubierta vegetal, características del suelo y del substrato rocoso, humedad del suelo y…

010504 meteorology & atmospheric sciencesGeography Planning and DevelopmentSòls -- FiltracióLand coverEnvironmental Science (miscellaneous)infiltrationvegetation cover01 natural sciencesSòls Absorció i adsorcióSòl Ús delVegetation typeEarth and Planetary Sciences (miscellaneous)Water content0105 earth and related environmental sciencesGeography (General)geographygeography.geographical_feature_categorySoil percolationLand useBedrockland useHumidity04 agricultural and veterinary sciencesdouble ring testInfiltration (hydrology)Land useSoil water040103 agronomy & agricultureG1-9220401 agriculture forestry and fisheriesEnvironmental sciencenortheastern spainSòls -- HumitatSoil moisturePhysical geographysoil moistureCuadernos de Investigación Geográfica
researchProduct

GIGJ: a crustal gravity model of the Guangdong Province for predicting the geoneutrino signal at the JUNO experiment

2019

Gravimetric methods are expected to play a decisive role in geophysical modeling of the regional crustal structure applied to geoneutrino studies. GIGJ (GOCE Inversion for Geoneutrinos at JUNO) is a 3D numerical model constituted by ~46 x 10$^{3}$ voxels of 50 x 50 x 0.1 km, built by inverting gravimetric data over the 6{\deg} x 4{\deg} area centered at the Jiangmen Underground Neutrino Observatory (JUNO) experiment, currently under construction in the Guangdong Province (China). The a-priori modeling is based on the adoption of deep seismic sounding profiles, receiver functions, teleseismic P-wave velocity models and Moho depth maps, according to their own accuracy and spatial resolution. …

010504 meteorology & atmospheric sciencesGeoneutrinogeophysical uncertaintieInverse transform samplingFOS: Physical sciences01 natural sciencesBayesian methodUpper middle and lower crustStandard deviationNOSouth China BlockmiddlePhysics - GeophysicsMonte Carlo stochastic optimizationGOCE data gravimetric inversionGeophysical uncertaintiesGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Bayesian method; geophysical uncertainties; GOCE data gravimetric inversion; Monte Carlo stochastic optimization; South China Block; upper middle and lower crustImage resolution0105 earth and related environmental sciencesSubdivisionJiangmen Underground Neutrino Observatoryupper and middle and lower crustbusiness.industrySettore FIS/01 - Fisica SperimentaleCrustupperGeodesy[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Geophysics (physics.geo-ph)and lower crustDepth soundingGeophysics13. Climate actionSpace and Planetary SciencebusinessGeologyBayesian method geophysical uncertainties GOCE data gravimetric inversion Monte Carlo stochastic optimization South China Blockupper and middle and lower crust
researchProduct

Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales

2020

Summarization: The extent and impact of climate‐related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter‐Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events co…

010504 meteorology & atmospheric sciencesHYDROLOGICAL MODELSPopulation0207 environmental engineeringFLOOD RISKEnvironmental Sciences & Ecology02 engineering and technologySubtropics[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology01 natural sciencesPopulation densityLatitudeClimate-related extreme events/dk/atira/pure/sustainabledevelopmentgoals/climate_actionEarth and Planetary Sciences (miscellaneous)SDG 13 - Climate ActionMeteorology & Atmospheric SciencesBURNED AREAGLOBAL CROP PRODUCTIONGeosciences Multidisciplinary020701 environmental engineeringeducation0105 earth and related environmental sciencesGeneral Environmental ScienceEvent (probability theory)education.field_of_studyScience & TechnologyLand useGlobal warmingGlobal warmingVEGETATION MODEL ORCHIDEEGeology15. Life on landTERRESTRIAL CARBON BALANCE13. Climate actionClimatologyPhysical SciencesTROPICAL CYCLONE ACTIVITYHURRICANE INTENSITYEnvironmental scienceTropical cycloneINTERANNUAL VARIABILITYLife Sciences & BiomedicineEnvironmental SciencesINCORPORATING SPITFIRE
researchProduct

IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae

2020

Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a multiwavelength emission from the radio through gamma-rays. Although the leptonic scenario is able to explain most PWNe emission, a hadronic contribution cannot be excluded. A possible hadronic contribution to the high-energy gamma-ray emission inevitably leads to the production of neutrinos. Using 9.5 yr of all-sky IceCube data, we report results from a stacking analysis to search for neutrino emission from 35 PWNe that are high-energy gamma-ray…

010504 meteorology & atmospheric sciencesHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaNeutrino astronomy; High energy astrophysicsFOS: Physical sciencesCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyPulsar0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstronomy and AstrophysicsGalactic planeCOSMIC-RAYSCRAB-NEBULACrab NebulaPhysics and AstronomyNeutrino astronomy13. Climate actionSpace and Planetary ScienceGALACTIC SOURCESDISCOVERYPhysique des particules élémentairesHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsGAMMA-RAY EMISSIONLepton
researchProduct

A search for time-dependent astrophysical neutrino emission with IceCube data from 2012 to 2017

2020

Abstract High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period, as all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong var…

010504 meteorology & atmospheric sciencesHigh-energy astronomyAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectmodel [emission]FOS: Physical sciencesCosmic rayAstrophysics01 natural scienceslaw.inventionIceCube Neutrino ObservatoryIceCubeblazarlawemission [gamma ray]0103 physical sciencesCosmic ray sources; High-energy astrophysics; Particle astrophysicsenergy: high [neutrino]Blazar010303 astronomy & astrophysics0105 earth and related environmental sciencesmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstroparticle physicsPhysicsbackgroundAstronomy and AstrophysicsCosmic ray sourcesUniverseHigh-energy astrophysicsmessengerobservatorySpace and Planetary Scienceddc:520time dependenceacceleration [cosmic radiation]NeutrinoAstrophysics - High Energy Astrophysical PhenomenaParticle astrophysicsFlare
researchProduct

Asynchronous changes of CO2, H2, and He concentrations in soil gases: A theoretical model and experimental results

2016

010504 meteorology & atmospheric sciencesHydrogenchemistry.chemical_elementSoil science010502 geochemistry & geophysics01 natural scienceschemistry.chemical_compoundGeophysicschemistrySpace and Planetary ScienceGeochemistry and PetrologyAsynchronous communicationCarbon dioxideEarth and Planetary Sciences (miscellaneous)GeologyHelium0105 earth and related environmental sciencesJournal of Geophysical Research: Solid Earth
researchProduct

Persistence of orographic mixed‐phase clouds

2016

Mixed-phase clouds (MPCs) consist of ice crystals and supercooled water droplets at temperatures between 0 and approximately −38°C. They are thermodynamically unstable because the saturation vapor pressure over ice is lower than that over supercooled liquid water. Nevertheless, long-lived MPCs are ubiquitous in the Arctic. Here we show that persistent MPCs are also frequently found in orographic terrain, especially in the Swiss Alps, when the updraft velocities are high enough to exceed saturation with respect to liquid water allowing simultaneous growth of supercooled liquid droplets and ice crystals. Their existence is characterized by holographic measurements of cloud particles obtained …

010504 meteorology & atmospheric sciencesIce crystalsMeteorologyVapor pressure010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesGeophysicsGeneral Earth and Planetary SciencesEnvironmental scienceClimate modelMixed phasePersistence (discontinuity)SupercoolingSaturation (chemistry)0105 earth and related environmental sciencesOrographic liftGeophysical Research Letters
researchProduct

Applications of a new set of methane line parameters to the modeling of Titan's spectrum in the 1.58 μm window

2012

International audience; In this paper we apply a recently released set of methane line parameters (Wang et al., 2011) to the modeling of Titan spectra in the 1.58 mu m window at both low and high spectral resolution. We first compare the methane absorption based on this new set of methane data to that calculated from the methane absorption coefficients derived in situ from DISR/Huygens (Tomasko et al., 2008a; Karkoschka and Tomasko, 2010) and from the band models of Irwin et al. (2006) and Karkoschka and Tomasko (2010). The Irwin et al. (2006) band model clearly underestimates the absorption in the window at temperature-pressure conditions representative of Titan's troposphere, while the Ka…

010504 meteorology & atmospheric sciencesInfraredCASSINI VIMSHUYGENS PROBEMONODEUTERATED METHANEAtmospheric sciences01 natural sciences7. Clean energyMethaneSpectral lineTropospherechemistry.chemical_compoundsymbols.namesake0103 physical sciencesSpectral resolutionSpectroscopy010303 astronomy & astrophysicsCLOUD STRUCTURE0105 earth and related environmental sciencesPhysics[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Astronomy and Astrophysics9500 CM(-1)SPECTROSCOPIC DATABASEM TRANSPARENCY WINDOWComputational physicsAerosolchemistry[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]TEMPERATURE-DEPENDENCE13. Climate actionSpace and Planetary SciencesymbolsSHIFT COEFFICIENTSOUTER SOLAR-SYSTEMTitan (rocket family)
researchProduct

ERA5-Land: A state-of-the-art global reanalysis dataset for land applications

2021

Framed within the Copernicus Climate Change Service (C3S) of the European Commission, the European Centre for Medium-Range Weather Forecasts (ECMWF) is producing an enhanced global dataset for the land component of the fifth generation of European ReAnalysis (ERA5), hereafter referred to as ERA5-Land. Once completed, the period covered will span from 1950 to the present, with continuous updates to support land monitoring applications. ERA5-Land describes the evolution of the water and energy cycles over land in a consistent manner over the production period, which, among others, could be used to analyse trends and anomalies. This is achieved through global high-resolution numerical integrat…

010504 meteorology & atmospheric sciencesLEAF-AREA0207 environmental engineering[SDU.STU]Sciences of the Universe [physics]/Earth SciencesClimate change02 engineering and technologyForcing (mathematics)SOIL-MOISTURESURFACE-TEMPERATURE01 natural sciencesLAKE PARAMETERIZATIONGE1-350Water cycle020701 environmental engineeringWEST-AFRICASATELLITENUMERICAL WEATHER PREDICTION0105 earth and related environmental sciencesQE1-996.5IN-SITUElevationGeologyOPERATIONAL IMPLEMENTATION15. Life on landNumerical weather predictionEnvironmental sciences[SDU]Sciences of the Universe [physics]13. Climate actionEarth and Environmental SciencesClimatologyTemporal resolutionSNOW MODELSGeneral Earth and Planetary SciencesEnvironmental scienceSatelliteClimate model
researchProduct

Comparison and Evaluation of the TES and ANEM Algorithms for Land Surface Temperature and Emissivity Separation over the Area of Valencia, Spain

2017

Land Surface temperature (LST) is a key magnitude for numerous studies, especially for climatology and assessment of energy fluxes between surface and atmosphere. Retrieval of accurate LST requires a good characterization of surface emissivity. Both quantities are coupled in a single radiance measurement; for this reason, for N spectral bands available in a remote sensor, there will always be N + 1 unknowns. To solve the indeterminacy, temperature-emissivity separation methods have been proposed, among which the Temperature Emissivity Separation (TES) algorithm is one of the most widely used. The Adjusted Normalized Emissivity Method (ANEM) was proposed as a modification of the Normalized E…

010504 meteorology & atmospheric sciencesLand surface temperatureScience0211 other engineering and technologiesland surface temperature02 engineering and technology01 natural sciencesASTERTES; ANEM; land surface temperature; emissivity; ASTER; thermal infraredTermodinàmicaEmissivityValencia021101 geological & geomatics engineering0105 earth and related environmental sciencesbiologyQAtmospheric correctionSpectral bandsTemperaturabiology.organism_classificationANEMSea surface temperatureemissivityRadianceGeneral Earth and Planetary SciencesEnvironmental sciencethermal infraredEmpirical relationshipAlgorithmTESRemote Sensing
researchProduct