Search results for " protease"

showing 10 items of 170 documents

Targeting of the Leishmania Mexicana cysteine protease CPB2.8 ΔCTE by decorated fused benzo[b] thiophene scaffold.

2016

A potent and highly selective anhydride-based inhibitor of Leishmania mexicana cysteine protease CPB2.8ΔCTE (IC50 = 3.7 μM) was identified. The details of the interaction of the ligand with the enzyme active site were investigated by NMR biomimetic experiments and docking studies. Results of inhibition assays, NMR and theoretical studies indicate that the ligand acts initially as a non-covalent inhibitor and later as an irreversible covalent inhibitor by chemoselective attack of CYS 25 thiolate to an anhydride carbonyl.

0301 basic medicinebiology010405 organic chemistryChemistryStereochemistryGeneral Chemical EngineeringActive siteGeneral ChemistryHighly selectivebiology.organism_classification01 natural sciencesCysteine proteaseLeishmania mexicana0104 chemical sciences03 medical and health scienceschemistry.chemical_compound030104 developmental biologyCovalent bondDocking (molecular)biology.proteinThiopheneDRUG DISCOVERY SOFTWARE NEWS FORCE-FIELD CATHEPSIN-L INHIBITORS OPTIMIZATION TRYPANOSOMIASIS IDENTIFICATION PROTEINASES VALIDATIONIC50
researchProduct

Bistacrines as potential antitrypanosomal agents

2017

Human African Trypanosomiasis (HAT) is caused by two subspecies of the genus Trypanosoma, namely Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. The disease is fatal if left untreated and therapy is limited due to only five non-adequate drugs currently available. In preliminary studies, dimeric tacrine derivatives were found to inhibit parasite growth with IC50-values in the nanomolar concentration range. This prompted the synthesis of a small, but smart library of monomeric and dimeric tacrine-type compounds and their evaluation of antiprotozoal activity. Rhodesain, a lysosomal cathepsin-L like cysteine protease of T. brucei rhodesiense is essential for parasite survival a…

0301 basic medicinemedicine.drug_classTrypanosoma brucei bruceiClinical BiochemistryPharmaceutical ScienceFlavoproteinBiochemistryCell LineMiceStructure-Activity Relationship03 medical and health sciencesParasitic Sensitivity TestsOxidoreductaseparasitic diseasesDrug DiscoverymedicineAnimalsAfrican trypanosomiasisMolecular BiologyCell Proliferationchemistry.chemical_classificationDose-Response Relationship DrugMolecular StructurebiologyChemistryOrganic ChemistryTrypanosoma brucei rhodesiensemedicine.diseasebiology.organism_classificationTrypanocidal AgentsCysteine proteaseTrypanosomiasis African030104 developmental biologyBiochemistryTacrineTacrineAntiprotozoalbiology.proteinMolecular MedicineProtozoamedicine.drugBioorganic & Medicinal Chemistry
researchProduct

Dipeptidyl Peptidase IV as a Muscle Myokine

2020

Dipeptidyl peptidase IV (DPP-IV) is a unique serine protease that exists in a membrane bound state and in a soluble state in most tissues in the body. DPP-IV has multiple targets including cytokines, neuropeptides, and incretin hormones, and plays an important role in health and disease. Recent work suggests that skeletal muscle releases DPP-IV as a myokine and participates in control of muscle blood flow. However, few of the functions of DPP-IV as a myokine have been investigated to date and there is a poor understanding about what causes DPP-IV to be released from muscle.

0301 basic medicinemedicine.medical_specialtyanimal structuresPhysiologymuscleMini ReviewNeuropeptideIncretin030204 cardiovascular system & hematologyDipeptidyl peptidaselcsh:Physiology03 medical and health sciences0302 clinical medicinePhysiology (medical)Internal medicineMyokinemedicinemetalloproteasesSerine proteaseMetalloproteinasebiologyexerciselcsh:QP1-981ChemistrySkeletal musclewhey proteinpeptidasesecretome030104 developmental biologyEndocrinologymedicine.anatomical_structurebiology.proteinHormoneFrontiers in Physiology
researchProduct

Famotidine inhibits toll-like receptor 3-mediated inflammatory signaling in SARS-CoV-2 infection

2021

Apart from prevention using vaccinations, the management options for COVID-19 remain limited. In retrospective cohort studies, use of famotidine, a specific oral H2 receptor antagonist (antihistamine), has been associated with reduced risk of intubation and death in patients hospitalized with COVID-19. In a case series, nonhospitalized patients with COVID-19 experienced rapid symptom resolution after taking famotidine, but the molecular basis of these observations remains elusive. Here we show using biochemical, cellular, and functional assays that famotidine has no effect on viral replication or viral protease activity. However, famotidine can affect histamine-induced signaling processes i…

0301 basic medicinemedicine.medical_treatmentPharmacologyVirus ReplicationBiochemistrychemistry.chemical_compoundChemokine CCL2Coronavirus 3C ProteasesResearch ArticlesToll-like receptorbiologyNF-kappa BFamotidineMolecular Docking SimulationCytokine release syndromeCytokinemedicine.symptomSignal transductionHistaminemedicine.drugProtein BindingSignal TransductionHistamine AntagonistsInflammation03 medical and health sciencesToll-like receptormedicineHumansInterleukin 6Molecular BiologyBinding Sites030102 biochemistry & molecular biologybusiness.industryInterleukin-6SARS-CoV-2Cell Biologymedicine.diseasehistamineToll-Like Receptor 3Famotidine030104 developmental biologychemistryA549 CellsSARS-CoV2biology.proteinanti-viral signalingInterferon Regulatory Factor-3Caco-2 CellsbusinessHeLa Cells
researchProduct

Off-Target-Based Design of Selective HIV-1 PROTEASE Inhibitors

2021

The approval of the first HIV-1 protease inhibitors (HIV-1 PRIs) marked a fundamental step in the control of AIDS, and this class of agents still represents the mainstay therapy for this illness. Despite the undisputed benefits, the necessary lifelong treatment led to numerous severe side-effects (metabolic syndrome, hepatotoxicity, diabetes, etc.). The HIV-1 PRIs are capable of interacting with “secondary” targets (off-targets) characterized by different biological activities from that of HIV-1 protease. In this scenario, the in-silico techniques undoubtedly contributed to the design of new small molecules with well-fitting selectivity against the main target, analyzing possible undesirabl…

0301 basic medicineon/off-targetsProtein ConformationComputer sciencemedicine.medical_treatmentHIV InfectionsLigands01 natural sciencesHIV ProteaseHIV-1 proteaseCatalytic DomainDrug DiscoveryBiology (General)DRUDITSpectroscopyMolecular StructurebiologyGeneral MedicineResearch processSmall moleculeComputer Science ApplicationsMolecular Docking SimulationChemistryligand-structure basedQH301-705.5NCI databaseComputational biologyArticleCatalysisInorganic ChemistryStructure-Activity Relationshipmolecular descriptors03 medical and health sciencesHIV-1 proteasemedicineHumansComputer SimulationPhysical and Theoretical ChemistryQD1-999Molecular BiologyVirtual screeningProteaseOrganic ChemistryHIV Protease Inhibitorsmolecular dockingvirtual screening0104 chemical sciences010404 medicinal & biomolecular chemistry030104 developmental biologyDrug DesignHIV-1biology.proteinInternational Journal of Molecular Sciences
researchProduct

Antiprotozoal and cysteine proteases inhibitory activity of dipeptidyl enoates

2018

A family of dipeptidyl enoates has been prepared and tested against the parasitic cysteine proteases rhodesain, cruzain and falcipain-2 related to sleeping sickness, Chagas disease and malaria, respectively. They have also been tested against human cathepsins B and L1 for selectivity. Dipeptidyl enoates resulted to be irreversible inhibitors of these enzymes. Some of the members of the family are very potent inhibitors of parasitic cysteine proteases displaying k2nd (M−1s−1) values of seven orders of magnitude. In vivo antiprotozoal testing was also performed. Inhibitors exhibited IC50 values in the micromolar range against Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi and ev…

0301 basic medicinesleeping sicknessClinical BiochemistryPharmaceutical Science01 natural sciencesBiochemistryCathepsin BinhibitorsDrug Discoverychemistry.chemical_classificationbiologyChemistryDipeptidesHep G2 CellsMolecular Docking SimulationCysteine EndopeptidasesBiochemistryAntiprotozoalMolecular MedicineChagas diseaseProteasesCell Survivalmedicine.drug_classPlasmodium falciparumTrypanosoma brucei bruceimalariaAntiprotozoal AgentsCysteine Proteinase InhibitorsTrypanosoma bruceicysteine proteasesInhibitory Concentration 50Structure-Activity Relationship03 medical and health sciencesparasitic diseasesmedicineHumansTrypanosoma cruziMolecular Biologychagas diseaseBinding Sites010405 organic chemistryOrganic ChemistryPlasmodium falciparumbiology.organism_classificationmedicine.diseaseProtein Structure Tertiary0104 chemical sciences030104 developmental biologyEnzymeCysteineBioorganic & Medicinal Chemistry
researchProduct

2021

The coronavirus pandemic has affected more than 150 million people, while over 3.25 million people have died from the coronavirus disease 2019 (COVID-19). As there are no established therapies for COVID-19 treatment, drugs that inhibit viral replication are a promising target; specifically, the main protease (Mpro) that process CoV-encoded polyproteins serves as an Achilles heel for assembly of replication-transcription machinery as well as down-stream viral replication. In the search for potential antiviral drugs that target Mpro, a series of cembranoid diterpenes from the biologically active soft-coral genus Sarcophyton have been examined as SARS-CoV-2 Mpro inhibitors. Over 360 metabolite…

0303 health sciencesProteasebiologySarcophytonChemistrymedicine.medical_treatmentIn silicoPharmaceutical Sciencemedicine.disease_causebiology.organism_classification01 natural sciences0104 chemical sciences010404 medicinal & biomolecular chemistry03 medical and health sciencesBiochemistryViral replicationDrug DiscoverymedicineHIV Protease InhibitorStructure–activity relationshipPharmacology Toxicology and Pharmaceutics (miscellaneous)Darunavir030304 developmental biologymedicine.drugCoronavirusMarine Drugs
researchProduct

The N-terminal domain of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for its acclimative proteolysis.

2000

AbstractVariations in the amount of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for regulation of the uptake of light into photosystem II. An endogenous proteolytic system was found to be involved in the degradation of LHCII in response to elevated light intensities and the proteolysis was shown to be under tight regulation [Yang, D.-H. et al. (1998) Plant Physiol. 118, 827–834]. In this study, the substrate specificity and recognition site towards the protease were examined using reconstituted wild-type and mutant recombinant LHCII. The results show that the LHCII apoprotein and the monomeric form of the holoprotein are targeted for proteolysis while t…

Acclimative proteaseChlorophyll aN-terminal domainPhotosystem IImedicine.medical_treatmentProteolysisMutantMolecular Sequence DataPhotosynthetic Reaction Center Complex ProteinsBiophysicsLight-Harvesting Protein ComplexesRecognition siteEndogenyLight-harvesting complex IIBiochemistrylaw.inventionchemistry.chemical_compoundStructural BiologylawSpinacia oleraceaGeneticsmedicineAmino Acid SequenceMolecular BiologyProteasemedicine.diagnostic_testSequence Homology Amino AcidChemistryBinding proteinHydrolysisPhotosystem II Protein ComplexCell BiologyBiochemistryRecombinant light-harvesting complex IIProteolysisRecombinant DNAFEBS letters
researchProduct

Long-term CD4+ T-cell count evolution after switching from regimens including HIV nucleoside reverse transcriptase inhibitors (NRTI) plus protease in…

2011

Abstract Background Data regarding CD4+ recovery after switching from protease inhibitor (PI)-based regimens to regimens not containing PI are scarce. Methods Subjects with virological success on first-PI-regimens who switched to NNRTI therapy (NNRTI group) or to nucleoside reverse transcriptase (NRTI)-only (NRTI group) were studied. The effect of the switch on the ongoing CD4+ trend was assessed by two-phase linear regression (TPLR), allowing us to evaluate whether a change in the CD4+ trend (hinge) occurred and the time of its occurrence. Furthermore, we described the evolution of the frequencies in CD4-count classes across four relevant time-points (baseline, before and immediately after…

AdultCD4-Positive T-LymphocytesMalemedicine.medical_treatmentProtease InhibitorHuman immunodeficiency virus (HIV)CD4+ T-cellHIV InfectionsBiologymedicine.disease_causeSettore MED/17 - MALATTIE INFETTIVENucleoside Reverse Transcriptase InhibitorTimelcsh:Infectious and parasitic diseasesZidovudineRetrospective Studieimmune system diseasesAntiretroviral Therapy Highly ActivemedicineHumansProtease inhibitor (pharmacology)HIV InfectionProtease Inhibitorslcsh:RC109-216Retrospective StudiesHIV; CD4+ T-cellProteaseCd4 t cellDrug SubstitutionBackground dataHIVvirus diseasesMiddle AgedVirologyHIV; AIDS; CD4; NRTIReverse Transcriptase InhibitorCD4 Lymphocyte CountInfectious DiseasesCD4-Positive T-LymphocyteReverse Transcriptase InhibitorsRitonavirFemaleAdult; Antiretroviral Therapy Highly Active; CD4 Lymphocyte Count; CD4-Positive T-Lymphocytes; Female; HIV Infections; Humans; Male; Middle Aged; Protease Inhibitors; Retrospective Studies; Reverse Transcriptase Inhibitors; Time; Drug Substitution; Infectious Diseasesmedicine.drugHumanResearch Article
researchProduct

Low Trough Plasma Concentrations of Nevirapine Associated with Virologic Rebounds in HIV-Infected Patients Who Switched from Protease Inhibitors

2005

BACKGROUND:The substitution of a nonnucleoside reverse-transcriptase inhibitor (NNRTI) for protease inhibitors (PIs) has demonstrated its suitability to maintain virologic response. However, the switch from PIs to an NNRTI could fail for a number of reasons, including NNRTI-associated toxicity and emergence of NNRTI-resistant variants.OBJECTIVE:To describe the virologic failures among 74 HIV-infected patients who switched from PIs to nevirapine.METHODS:Virologic failure was defined as any rebound of the plasma HIV-RNA (pVL) levels >1000 copies/mL on one occasion or 2 consecutive intermittent viremia episodes defined as increases of the pVL >20 copies/mL but <1000 copies/mL. Virolog…

AdultMaleNevirapineHIV InfectionsViremiaImmunopathologyDrug Resistance ViralHumansMedicinePharmacology (medical)Protease inhibitor (pharmacology)NevirapineProspective StudiesSidabiologyReverse-transcriptase inhibitorbusiness.industryHIV Protease InhibitorsMiddle AgedViral Loadbiology.organism_classificationmedicine.diseaseVirologyToxicityHIV-1FemaleViral diseasebusinessFollow-Up Studiesmedicine.drugAnnals of Pharmacotherapy
researchProduct