Search results for " recognition."
showing 10 items of 3189 documents
MFNet: Multi-feature convolutional neural network for high-density crowd counting
2020
The crowd counting task involves the issue of security, so now more and more people are concerned about it. At present, the most difficult problem of population counting consists in: how to make the model distinguish human head features more finely in the densely populated area, such as head overlap and how to find a small-scale local head feature in an image with a wide range of population density. Facing these challenges, we propose a network for multiple feature convolutional neural network, which is called MFNet. It aims to get high-quality density maps in the high-density crowd scene, and at the same time to perform the task of the count and estimation of the crowd. In terms of crowd c…
Overview of the Development of Hydraulic Above Knee Prosthesis
2017
This paper presents research and development of hydraulically powered above-knee prosthesis (HAKP) and novel prosthetic foot, in order to enable transfemoral (TF) amputees perform stair ascent and other daily activities in as much as possible natural manner. Functions that need exertion of large forces and moments during locomotion such as walking up stairs and slopes cannot be naturally accomplished by commercially available microprocessor-controlled above-knee (AK) prostheses. Also, such prosthetic devices are expensive and unaffordable for major part of amputee population, so mostly used commercial prostheses are energetically passive devices. Deficiency of passive prosthetic devices is …
New delay-dependent stability of Markovian jump neutral stochastic systems with general unknown transition rates
2015
This paper investigates the delay-dependent stability problem for neutral Markovian jump systems with generally unknown transition rates GUTRs. In this neutral GUTR model, each transition rate is completely unknown or only its estimate value is known. Based on the study of expectations of the stochastic cross-terms containing the integral, a new stability criterion is derived in terms of linear matrix inequalities. In the mathematical derivation process, bounding stochastic cross-terms, model transformation and free-weighting matrix are not employed for less conservatism. Finally, an example is provided to demonstrate the effectiveness of the proposed results.
Dissipativity-Based Small-Gain Theorems for Stochastic Network Systems
2016
In this paper, some small-gain theorems are proposed for stochastic network systems which describe large-scale systems with interconnections, uncertainties and random disturbances. By the aid of conditional dissipativity and showing times of stochastic interval, small-gain conditions proposed for the deterministic case are extended to the stochastic case. When some design parameters are tunable in practice, we invaginate a simpler method to verify small-gain condition by selecting one subsystem as a monitor. Compared with the existing results, the existence-and-uniqueness of solution and ultimate uniform boundedness of input are removed from requirements of input-to-state stability and smal…
PolyACO+: a multi-level polygon-based ant colony optimisation classifier
2017
Ant Colony Optimisation for classification has mostly been limited to rule based approaches where artificial ants walk on datasets in order to extract rules from the trends in the data, and hybrid approaches which attempt to boost the performance of existing classifiers through guided feature reductions or parameter optimisations. A recent notable example that is distinct from the mainstream approaches is PolyACO, which is a proof of concept polygon-based classifier that resorts to ant colony optimisation as a technique to create multi-edged polygons as class separators. Despite possessing some promise, PolyACO has some significant limitations, most notably, the fact of supporting classific…
On the Influence of Affect in EEG-Based Subject Identification
2021
Biometric signals have been extensively used for user identification and authentication due to their inherent characteristics that are unique to each person. The variation exhibited between the brain signals (EEG) of different people makes such signals especially suitable for biometric user identification. However, the characteristics of these signals are also influenced by the user’s current condition, including his/her affective state. In this paper, we analyze the significance of the affect-related component of brain signals within the subject identification context. Consistent results are obtained across three different public datasets, suggesting that the dominant component of the sign…
Image-Evoked Affect and its Impact on Eeg-Based Biometrics
2019
Electroencephalography (EEG) signals provide a representation of the brain’s activity patterns and have been recently exploited for user identification and authentication due to their uniqueness and their robustness to interception and artificial replication. Nevertheless, such signals are commonly affected by the individual’s emotional state. In this work, we examine the use of images as stimulus for acquiring EEG signals and study whether the use of images that evoke similar emotional responses leads to higher identification accuracy compared to images that evoke different emotional responses. Results show that identification accuracy increases when the system is trained with EEG recordin…
ES1D: A Deep Network for EEG-Based Subject Identification
2017
Security systems are starting to meet new technologies and new machine learning techniques, and a variety of methods to identify individuals from physiological signals have been developed. In this paper, we present ESID, a deep learning approach to identify subjects from electroencephalogram (EEG) signals captured by using a low cost device. The system consists of a Convolutional Neural Network (CNN), which is fed with the power spectral density of different EEG recordings belonging to different individuals. The network is trained for a period of one million iterations, in order to learn features related to local patterns in the spectral domain of the original signal. The performance of the…
Mutanome directed cancer immunotherapy
2015
Somatic mutations are important drivers of cancer development. Accumulating evidence suggests that a significant subset of mutations result in neo-epitopes recognized by autologous T cells and thus may constitute the Achilles' heel of tumor cells. T cells directed against mutations have been shown to have a key role in clinical efficacy of potent cancer immunotherapy modalities, such as adoptive transfer of autologous tumor infiltrating lymphocytes and immune checkpoint inhibitors. Whereas these findings strengthen the idea of a prominent role of neo-epitopes in tumor rejection, the systematic therapeutic exploitation of mutations was hampered until recently by the uniqueness of the reperto…
Group analysis of ongoing EEG data based on fast double-coupled nonnegative tensor decomposition
2019
Abstract Background Ongoing EEG data are recorded as mixtures of stimulus-elicited EEG, spontaneous EEG and noises, which require advanced signal processing techniques for separation and analysis. Existing methods cannot simultaneously consider common and individual characteristics among/within subjects when extracting stimulus-elicited brain activities from ongoing EEG elicited by 512-s long modern tango music. New method Aiming to discover the commonly music-elicited brain activities among subjects, we provide a comprehensive framework based on fast double-coupled nonnegative tensor decomposition (FDC-NTD) algorithm. The proposed algorithm with a generalized model is capable of simultaneo…