Search results for " recognition."
showing 10 items of 3189 documents
An Input Observer-Based Stiffness Estimation Approach for Flexible Robot Joints
2020
This letter addresses the stiffness estimation problem for flexible robot joints, driven by variable stiffness actuators in antagonistic setups. Due to the difficulties of achieving consistent production of these actuators and the time-varying nature of their internal flexible elements, which are subject to plastic deformation over time, it is currently a challenge to precisely determine the total flexibility torque applied to a robot's joint and the corresponding joint stiffness. Herein, by considering the flexibility torque acting on each motor as an unknown signal and building upon Unknown Input Observer theory, a solution for electrically-driven actuators is proposed, which consists of …
Direct analysis of power-split CVTs: A unified method
2018
Abstract This paper provides a fast kinematic analysis method for compound power-split CVTs, which consents to identify their functional parameters. Such parameters permit the assessment of power flows, torques and efficiency, and the design of equivalent transmissions by the use of a recently published mathematical model. The same method can easily address either simpler or more complex transmissions by mean of kinematic equivalent parameters, without the need to arrange separate systems of equations. As a case study, we performed the kinematic analysis of the “Voltec” multi-mode GM transmission.
Tracking Control of Networked Multi-Agent Systems Under New Characterizations of Impulses and Its Applications in Robotic Systems
2016
This paper examines the problem of tracking control of networked multi-agent systems with multiple delays and impulsive effects, whose results are applied to mechanical robotic systems. Four kinds of impulsive effects are taken into account: 1) both the strengths of impulsive effects and the number of nodes injected with impulses are time dependent; 2) the strengths of impulsive effects occur according to certain probabilities and the number of nodes under impulsive control is time varying; 3) the strengths of impulses are time varying, whereas the number of nodes with impulses takes place according to certain probabilities; 4) both the strengths of impulses and the number of nodes with imp…
Design of a modular Autonomous Underwater Vehicle for archaeological investigations
2015
MARTA (MARine Tool for Archaeology) is a modular AUV (Autonomous Underwater Vehicle) designed and developed by the University of Florence in the framework of the ARROWS (ARchaeological RObot systems for the World's Seas) FP7 European project. The ARROWS project challenge is to provide the underwater archaeologists with technological tools for cost affordable campaigns: i.e. ARROWS adapts and develops low cost AUV technologies to significantly reduce the cost of archaeological operations, covering the full extent of an archaeological campaign (underwater mapping, diagnosis and cleaning tasks). The tools and methodologies developed within ARROWS comply with the "Annex" of the 2001 UNESCO Conv…
Regularized LMS methods for baseline wandering removal in wearable ECG devices
2016
The acquisition of electrocardiogram (ECG) signals by means of light and reduced size devices can be usefully exploited in several health-care applications, e.g., in remote monitoring of patients. ECG signals, however, are affected by several artifacts due to noise and other disturbances. One of the major ECG degradation is represented by the baseline wandering (BW), a slowly varying change of the signal trend. Several BW removal algorithms have been proposed into the literature, even though their complexity often hinders their implementation into wearable devices characterized by limited computational and memory resources. In this study, we formalize the BW removal problem as a mean-square…
Finite-time stability and stabilisation for a class of nonlinear systems with time-varying delay
2014
This paper is concerned with the problems of finite-time stability FTS and finite-time stabilisation for a class of nonlinear systems with time-varying delay, which can be represented by Takagi–Sugeno fuzzy system. Some new delay-dependent FTS conditions are provided and applied to the design problem of finite-time fuzzy controllers. First, based on an integral inequality and a fuzzy Lyapunov–Krasovskii functional, a delay-dependent FTS criterion is proposed for open-loop fuzzy system by introducing some free fuzzy weighting matrices, which are less conservative than other existing ones. Then, the parallel distributed compensation controller is designed to ensure FTS of the time-delay fuzzy…
Health Indicator for Low-Speed Axial Bearings Using Variational Autoencoders
2020
This paper proposes a method for calculating a health indicator (HI) for low-speed axial rolling element bearing (REB) health assessment by utilizing the latent representation obtained by variational inference using Variational Autoencoders (VAEs), trained on each speed reference in the dataset. Further, versatility is added by conditioning on the speed, extending the VAE to a conditional VAE (CVAE), thereby incorporating all speeds in a single model. Within the framework, the coefficients of autoregressive (AR) models are used as features. The dimensionality reduction inherent in the proposed method lowers the need of expert knowledge to design good condition indicators. Moreover, the sugg…
Power losses in power-split CVTs: A fast black-box approximate method
2018
Abstract This paper addresses the mechanical losses of planetary transmissions, with particular attention to power-split CVTs in their hybrid electric versions. It provides unified layout-independent analytical relationships, which can be used for both analysis, design and control purposes, and a simplified approach; the latter overcomes the necessity to segment the operating range of the power-split CVT in order to keep its loss model physically consistent. An example of application to a real hybrid electric PS-CVT is performed to show the simplicity, accuracy and generality of the proposed method.
Central catadioptric image processing with geodesic metric
2011
International audience; Because of the distortions produced by the insertion of a mirror, catadioptric images cannot be processed similarly to classical perspective images. Now, although the equivalence between such images and spherical images is well known, the use of spherical harmonic analysis often leads to image processing methods which are more difficult to implement. In this paper, we propose to define catadioptric image processing from the geodesic metric on the unitary sphere. We show that this definition allows to adapt very simply classical image processing methods. We focus more particularly on image gradient estimation, interest point detection, and matching. More generally, th…
A Geometrical Approach for Vision Based Attitude and Altitude Estimation for UAVs in Dark Environments
2012
International audience; This paper presents a single camera and laser system dedicated to the realtime estimation of attitude and altitude for unmanned aerial vehicles (UAV) under low illumination conditions to dark environments. The fisheye camera allows to cover a large field of view (FOV). The approach, close to structured light systems, uses the geometrical information obtained by the projection of a laser circle onto the ground plane and perceived by the camera. We propose some experiments based on simulated data and real sequences. The results show good agreement with the ground truth values from the commercial sensors in terms of its accuracy and correctness. The results also prove i…