Search results for " recognition"

showing 10 items of 3220 documents

Improving Docking Performance Using Negative Image-Based Rescoring

2017

Despite the large computational costs of molecular docking, the default scoring functions are often unable to recognize the active hits from the inactive molecules in large-scale virtual screening experiments. Thus, even though a correct binding pose might be sampled during the docking, the active compound or its biologically relevant pose is not necessarily given high enough score to arouse the attention. Various rescoring and post-processing approaches have emerged for improving the docking performance. Here, it is shown that the very early enrichment (number of actives scored higher than 1% of the highest ranked decoys) can be improved on average 2.5-fold or even 8.7-fold by comparing th…

0301 basic medicineComputer scienceEnergy minimizationconsensus scoring03 medical and health sciencesmolekyylilääketiedeta318Pharmacology (medical)benchmarkingdocking rescoringOriginal ResearchPharmacologyVirtual screeningDrug discoverybusiness.industrylcsh:RM1-950Pattern recognitionmolecular dockingnegative image-based rescoring (R-NiB)030104 developmental biologylcsh:Therapeutics. PharmacologyActive compoundDocking (molecular)Target proteinArtificial intelligencebusinessFrontiers in Pharmacology
researchProduct

Network-Wide Adaptive Burst Detection Depicts Neuronal Activity with Improved Accuracy

2017

Neuronal networks are often characterized by their spiking and bursting statistics. Previously, we introducedan adaptive burst analysis methodwhich enhances the analysis power for neuronal networks with highly varying firing dynamics. The adaptation is based on single channels analyzing each element of a network separately. Such kind of analysis was adequate for the assessment of local behavior, where the analysis focuses on the neuronal activity in the vicinity of a single electrode. However, the assessment of the whole network may be hampered, if parts of the network are analyzed using different rules. Here, we test how using multiple channels and measurement time points affect adaptive b…

0301 basic medicineComputer scienceNeuroscience (miscellaneous)Interval (mathematics)Machine learningcomputer.software_genreta3112lcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceBursting0302 clinical medicineMoving averageHistogramMethodsCluster analysislcsh:Neurosciences. Biological psychiatry. Neuropsychiatryta113network classificationbusiness.industryEmphasis (telecommunications)Pattern recognition217 Medical engineeringlaskennallinen neurotiede113 Computer and information sciencesPower (physics)030104 developmental biologymicroelectrode arraysburst detectionburst synchronySpike (software development)Artificial intelligenceneuronal networksbusinesscomputer030217 neurology & neurosurgeryNeurosciencecomputational neuroscienceFrontiers in Computational Neuroscience
researchProduct

Automatic detection of hemangiomas using unsupervised segmentation of regions of interest

2016

In this paper we compare the performances of three automatic methods of identifying hemangioma regions in images: 1) unsupervised segmentation using the Otsu method, 2) Fuzzy C-means clustering (FCM) and 3) an improved region growing algorithm based on FCM (RG-FCM). For each image, the starting point of the algorithms is a rectangular region of interest (ROI) containing the hemangioma. For computing the performances of each method, the ROIs had been manually labeled in 2 classes: pixels of hemangioma and pixels of non-hemangioma. The computed scores are given separately for each image, as well as global performances across all ROIs for both classes. The best classification of non-hemangioma…

0301 basic medicineComputer scienceScale-space segmentation02 engineering and technologyOtsu's methodHemangioma03 medical and health sciencessymbols.namesakeMinimum spanning tree-based segmentationRegion of interestHistogram0202 electrical engineering electronic engineering information engineeringmedicineComputer visionSegmentation-based object categorizationbusiness.industryPattern recognitionImage segmentationmedicine.diseaseStatistical classification030104 developmental biologyRegion growingsymbols020201 artificial intelligence & image processingArtificial intelligencebusiness2016 International Conference on Communications (COMM)
researchProduct

Deep learning network for exploiting positional information in nucleosome related sequences

2017

A nucleosome is a DNA-histone complex, wrapping about 150 pairs of double-stranded DNA. The role of nucleosomes is to pack the DNA into the nucleus of the Eukaryote cells to form the Chromatin. Nucleosome positioning genome wide play an important role in the regulation of cell type-specific gene activities. Several biological studies have shown sequence specificity of nucleosome presence, clearly underlined by the organization of precise nucleotides substrings. Taking into consideration such advances, the identification of nucleosomes on a genomic scale has been successfully performed by DNA sequence features representation and classical supervised classification methods such as Support Vec…

0301 basic medicineComputer scienceSpeech recognitionCell02 engineering and technologyComputational biologyGenomeDNA sequencing03 medical and health scienceschemistry.chemical_compoundDeep Learning0202 electrical engineering electronic engineering information engineeringmedicineNucleosomeNucleotideGeneSettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionichemistry.chemical_classificationSequenceSettore INF/01 - Informaticabiologybusiness.industryDeep learningnucleosomebiology.organism_classificationSubstringChromatinIdentification (information)030104 developmental biologymedicine.anatomical_structurechemistry020201 artificial intelligence & image processingEukaryoteNucleosome classification Epigenetic Deep learning networks Recurrent Neural NetworksArtificial intelligencebusinessDNA
researchProduct

Topographic Independent Component Analysis reveals random scrambling of orientation in visual space

2017

Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches whi…

0301 basic medicineComputer scienceVisionVisual spaceStatistics as Topiclcsh:MedicineSocial SciencesSpace (mathematics)Scramblingchemistry.chemical_compound0302 clinical medicineCognitionLearning and MemoryAnimal CellsMedicine and Health SciencesPsychologylcsh:Sciencemedia_commonVisual CortexNeuronsMammalsObject RecognitionCoding MechanismsBrain MappingMultidisciplinaryGeographyOrientation (computer vision)Visual fieldmedicine.anatomical_structureVertebratesSensory PerceptionCellular TypesAnatomyNeuronal TuningResearch ArticleCartographyPrimatesmedia_common.quotation_subjectOcular AnatomyRetina03 medical and health sciencesTopographic MapsOcular SystemMemoryPerceptionOrientationNeuronal tuningmedicineAnimalsHumansCortical surfaceComputational NeuroscienceRetinabusiness.industrylcsh:ROrganismsCognitive PsychologyBiology and Life SciencesComputational BiologyRetinalPattern recognitionCell Biology030104 developmental biologyVisual cortexchemistryRetinotopyCellular NeuroscienceAmniotesEarth SciencesCognitive Sciencelcsh:QPerceptionArtificial intelligencebusiness030217 neurology & neurosurgeryNeurosciencePLoS ONE
researchProduct

SpCLUST: Towards a fast and reliable clustering for potentially divergent biological sequences

2019

International audience; This paper presents SpCLUST, a new C++ package that takes a list of sequences as input, aligns them with MUSCLE, computes their similarity matrix in parallel and then performs the clustering. SpCLUST extends a previously released software by integrating additional scoring matrices which enables it to cover the clustering of amino-acid sequences. The similarity matrix is now computed in parallel according to the master/slave distributed architecture, using MPI. Performance analysis, realized on two real datasets of 100 nucleotide sequences and 1049 amino-acids ones, show that the resulting library substantially outperforms the original Python package. The proposed pac…

0301 basic medicineComputer science[INFO.INFO-SE] Computer Science [cs]/Software Engineering [cs.SE]Health Informatics[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE][INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing03 medical and health sciences[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]0302 clinical medicineSoftware[INFO.INFO-ET] Computer Science [cs]/Emerging Technologies [cs.ET][INFO.INFO-DC] Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]Cluster AnalysisHumansCluster analysis[INFO.INFO-CR] Computer Science [cs]/Cryptography and Security [cs.CR]computer.programming_languagebusiness.industry[INFO.INFO-IU] Computer Science [cs]/Ubiquitous ComputingSimilarity matrixPattern recognitionDNAGenomicsSequence Analysis DNAPython (programming language)Mixture model[INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationSpectral clusteringComputer Science Applications030104 developmental biologyComputingMethodologies_PATTERNRECOGNITION[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA][INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET][INFO.INFO-MA] Computer Science [cs]/Multiagent Systems [cs.MA][INFO.INFO-MO] Computer Science [cs]/Modeling and SimulationArtificial intelligence[INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]businesscomputerAlgorithmsSoftware030217 neurology & neurosurgery
researchProduct

Patch-based Carcinoma Detection on Confocal Laser Endomicroscopy Images -- A Cross-Site Robustness Assessment

2017

Deep learning technologies such as convolutional neural networks (CNN) provide powerful methods for image recognition and have recently been employed in the field of automated carcinoma detection in confocal laser endomicroscopy (CLE) images. CLE is a (sub-)surface microscopic imaging technique that reaches magnifications of up to 1000x and is thus suitable for in vivo structural tissue analysis. In this work, we aim to evaluate the prospects of a priorly developed deep learning-based algorithm targeted at the identification of oral squamous cell carcinoma with regard to its generalization to further anatomic locations of squamous cell carcinomas in the area of head and neck. We applied the…

0301 basic medicineConfocal laser endomicroscopyFOS: Computer and information sciencesComputer sciencebusiness.industryComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognition03 medical and health sciences030104 developmental biology0302 clinical medicineRobustness (computer science)Computer visionArtificial intelligence030223 otorhinolaryngologybusiness
researchProduct

Brain-like large scale cognitive networks and dynamics

2018

A new approach to the study of the brain and its functions known as Human Connectomics has been recently established. Starting from magnetic resonance images (MRI) of brain scans, it is possible to identify the fibers that link brain areas and to build an adjacency matrix that connects these areas, thus creating the brain connectome. The topology of these networks provides a lot of information about the organizational structure of the brain (both structural and functional). Nevertheless this knowledge is rarely used to investigate the possible emerging brain dynamics linked to cognitive functions. In this work, we implement finite state models on neural networks to display the outcoming bra…

0301 basic medicineConnectomicsQuantitative Biology::Neurons and CognitionArtificial neural networkComputer sciencebusiness.industryGeneral Physics and AstronomyCognitionPattern recognitionCognitive network03 medical and health sciencesPhysics and Astronomy (all)030104 developmental biology0302 clinical medicineNeuroimagingConnectomeGeneral Materials ScienceSegmentationAdjacency matrixArtificial intelligenceMaterials Science (all)Physical and Theoretical Chemistrybusiness030217 neurology & neurosurgery
researchProduct

A framework for data-driven adaptive GUI generation based on DICOM

2018

Computer applications for diagnostic medical imaging provide generally a wide range of tools to support physicians in their daily diagnosis activities. Unfortunately, some functionalities are specialized for specific diseases or imaging modalities, while other ones are useless for the images under investigation. Nevertheless, the corresponding Graphical User Interface (GUI) widgets are still present on the screen reducing the image visualization area. As a consequence, the physician may be affected by cognitive overload and visual stress causing a degradation of performances, mainly due to unuseful widgets. In clinical environments, a GUI must represent a sequence of steps for image investi…

0301 basic medicineDiagnostic ImagingAutomatedComputer scienceData-driven GUI generation; DICOM; Faceted classification; Graphical user interfaces; Medical diagnostic software; Algorithms; Brain; Cognition; Computers; Decision Support Systems Clinical; Diagnostic Imaging; Feasibility Studies; Humans; Magnetic Resonance Imaging; Medical Informatics; Pattern Recognition Automated; Software; Computer Graphics; Radiology Information Systems; User-Computer InterfaceGraphical user interfacesDecision Support SystemsHealth InformaticsPattern Recognitioncomputer.software_genrePattern Recognition Automated030218 nuclear medicine & medical imaging03 medical and health sciencesDICOMClinicalUser-Computer Interface0302 clinical medicineSoftwareCognitionHuman–computer interactionComputer GraphicsHumansDICOMGraphical user interfaceSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniFaceted classificationbusiness.industryComputersData-driven GUI generationBrainComputer Science Applications1707 Computer Vision and Pattern RecognitionMedical diagnostic softwareDecision Support Systems ClinicalMagnetic Resonance ImagingComputer Science ApplicationsVisualizationSoftware frameworkGraphical user interface030104 developmental biologyWorkflowRadiology Information SystemsInformation modelSoftware designFeasibility StudiesbusinesscomputerAlgorithmsMedical InformaticsSoftware
researchProduct

Informational and linguistic analysis of large genomic sequence collections via efficient Hadoop cluster algorithms

2018

Abstract Motivation Information theoretic and compositional/linguistic analysis of genomes have a central role in bioinformatics, even more so since the associated methodologies are becoming very valuable also for epigenomic and meta-genomic studies. The kernel of those methods is based on the collection of k-mer statistics, i.e. how many times each k-mer in {A,C,G,T}k occurs in a DNA sequence. Although this problem is computationally very simple and efficiently solvable on a conventional computer, the sheer amount of data available now in applications demands to resort to parallel and distributed computing. Indeed, those type of algorithms have been developed to collect k-mer statistics in…

0301 basic medicineEpigenomicsgenomic analysis; hadoop; distributed computingStatistics and ProbabilityComputer scienceBig dataSequence assemblyGenomeBiochemistryDomain (software engineering)Set (abstract data type)03 medical and health sciencesdistributed computingSoftwareComputational Theory and MathematicAnimalsCluster AnalysisHumansA-DNAk-mer counting distributed computing hadoop map reduceMolecular BiologyEpigenomicsBacteriabusiness.industryk-mer countingEukaryotaLinguisticsComputer Science Applications1707 Computer Vision and Pattern RecognitionGenomicsSequence Analysis DNAComputer Science ApplicationsComputational Mathematics030104 developmental biologymap reduceComputational Theory and MathematicsDistributed algorithmgenomic analysisKernel (statistics)MetagenomehadoopbusinessAlgorithmAlgorithmsSoftware
researchProduct