Search results for " relativity"

showing 10 items of 1158 documents

Dispersion Interactions between Neutral Atoms and the Quantum Electrodynamical Vacuum

2018

Dispersion interactions are long-range interactions between neutral ground-state atoms or molecules, or polarizable bodies in general, due to their common interaction with the quantum electromagnetic field. They arise from the exchange of virtual photons between the atoms, and, in the case of three or more atoms, are not additive. In this review, after having introduced the relevant coupling schemes and effective Hamiltonians, as well as properties of the vacuum fluctuations, we~outline the main properties of dispersion interactions, both in the nonretarded (van der Waals) and retarded (Casimir--Polder) regime. We then discuss their deep relation with the existence of the vacuum fluctuation…

Electromagnetic fieldHigh Energy Physics - TheoryPhysics and Astronomy (miscellaneous)Field (physics)General MathematicsVan der Waals forceFOS: Physical sciencesVirtual particleCasimir-Polder interactionGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmologyvacuum energyCasimir–Polder interactionssymbols.namesakeMany-body dispersion interactionVacuum energyQuantum mechanics0103 physical sciencesDispersion (optics)Computer Science (miscellaneous)Vacuum fluctuation010306 general physicsvacuum fluctuationsQuantum fluctuationPhysicsQuantum Physics010308 nuclear & particles physicslcsh:Mathematicsmany-body dispersion interactionslcsh:QA1-939Unruh effectHigh Energy Physics - Theory (hep-th)Chemistry (miscellaneous)symbolsvan der Waals forcesvan der Waals forceQuantum Physics (quant-ph)
researchProduct

Van der Waals and resonance interactions between accelerated atoms in vacuum and the Unruh effect

2017

We discuss different physical effects related to the uniform acceleration of atoms in vacuum, in the framework of quantum electrodynamics. We first investigate the van der Waals/Casimir-Polder dispersion and resonance interactions between two uniformly accelerated atoms in vacuum. We show that the atomic acceleration significantly affects the van der Waals force, yielding a different scaling of the interaction with the interatomic distance and an explicit time dependence of the interaction energy. We argue how these results could allow for an indirect detection of the Unruh effect through dispersion interactions between atoms. We then consider the resonance interaction between two accelerat…

Electromagnetic fieldHistoryField (physics)Vacuum stateFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesResonance (particle physics)General Relativity and Quantum CosmologyEducationsymbols.namesake0103 physical sciencesPhysics::Atomic and Molecular Clusters010306 general physicsQuantum fluctuationPhysicsQuantum Physics010308 nuclear & particles physicsInteraction energyComputer Science ApplicationsUnruh effectsymbolsAtomic physicsvan der Waals forceQuantum Physics (quant-ph)Dispersion Interactions Resonance interactions Vacuum field fluctuations Unruh effect.Journal of Physics: Conference Series
researchProduct

Classical electromagnetic radiation in noninertial reference frames

1991

Customarily electromagnetic radiation is defined with reference to some inertial laboratory frame. But such a definition is too narrow to be applicable to questions concerning accelerated observers,e.g. why an accelerated observer does not receive radiation from a co-accelerating charge. It is shown in this paper that a radiation concept introduced for inertial observers by Rohrlich and Teitelboim allows an extension to noninertial (accelerating and rotating) reference frames in a natural way. The generalized concept is explicitly dependent on the proper acceleration and the rotation of the observer’s laboratory frame. The case of radiation due to an accelerated point charge is treated in f…

Electromagnetic fieldPhysicsAccelerationClassical mechanicsInertial frame of referencePoint particleObserver (special relativity)Special relativityProper accelerationReference frameIl Nuovo Cimento B Series 11
researchProduct

Generalized Einstein-Maxwell field equations in the Palatini formalism

2013

We derive a new set of field equations within the framework of the Palatini formalism.These equations are a natural generalization of the Einstein-Maxwell equations which arise by adding a function $\mathcal{F}(\mathcal{Q})$, with $\mathcal{Q}\equiv F^{\alpha\beta}F_{\alpha\beta}$ to the Palatini Lagrangian $f(R,Q)$.The result we obtain can be viewed as the coupling of gravity with a nonlinear extension of the electromagnetic field.In addition,a new method is introduced to solve the algebraic equation associated to the Ricci tensor.

Electromagnetic fieldPhysicsAstronomy and AstrophysicsMaxwell fieldGeneral Relativity and Quantum CosmologyGravitationFormalism (philosophy of mathematics)Nonlinear systemAlgebraic equationsymbols.namesakeGeneral Relativity and Quantum CosmologySpace and Planetary SciencesymbolsEinsteinMathematical PhysicsRicci curvatureMathematical physics
researchProduct

The electromagnetic field of an accelerated charge in the proper reference frame of a noninertial observer

1989

The Lienard-Wiechert formulae for the electric and magnetic fields of an accelerated charge moving along an arbitrary world-line are generalized so that they can be applied by noninertial observers using accelerating and rotating reference frames. For this purpose, a relativistic coordinate-independent formalism suggested by DeFacio, Dennis and Eetzloff is extended to the description of all kinematical aspects required in the theory of the retarded fields of a point charge. The generalized Lienard-Wiechert formula is applied to a number of special situations, demonstrating that it allows a lucid and concise treatment of a number of subtle problems such as the role of the «relativity of acce…

Electromagnetic fieldPhysicsClassical mechanicsTheory of relativityObserver (quantum physics)Electromagnetic PhenomenaPoint particlePhysics::Accelerator PhysicsClassical electromagnetismPhysics::Classical PhysicsReference frameMagnetic fieldIl Nuovo Cimento B
researchProduct

The role of the ergosphere in the Blandford-Znajek process

2012

The Blandford-Znajek process, one of the most promising model for powering the relativistic jets from black holes, was initially introduced as a mechanism in which the magnetic fields extract energy from a rotating black hole. We study the evolution of force-free electromagnetic fields on regular spacetimes with an ergosphere, which are generated by rapidly rotating stars. Our conclusive results confirm previous works, claiming that the Blandford-Znajek mechanism is not directly related to the horizon of the black hole. We also show that the radiated energy depends exponentially on the compactness of the star.

Electromagnetic fieldPhysicsGeneral Relativity and Quantum CosmologyStarsRotating black holeAstrophysical jetSpace and Planetary ScienceAstrophysics::High Energy Astrophysical PhenomenaQuantum electrodynamicsBlandford–Znajek processAstronomy and AstrophysicsErgosphereMagnetic fieldMonthly Notices of the Royal Astronomical Society
researchProduct

Soliton Solutions with Real Poles in the Alekseev formulation of the Inverse-Scattering method

1999

A new approach to the inverse-scattering technique of Alekseev is presented which permits real-pole soliton solutions of the Ernst equations to be considered. This is achieved by adopting distinct real poles in the scattering matrix and its inverse. For the case in which the electromagnetic field vanishes, some explicit solutions are given using a Minkowski seed metric. The relation with the corresponding soliton solutions that can be constructed using the Belinskii-Zakharov inverse-scattering technique is determined.

Electromagnetic fieldPhysicsPhysics and Astronomy (miscellaneous)ScatteringMathematical analysisInverseFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyMatrix (mathematics)Physics and Astronomy (all)Nonlinear Sciences::Exactly Solvable and Integrable SystemsMetric (mathematics)Minkowski spaceInverse scattering problemSoliton
researchProduct

Nonthermal effects of acceleration in the resonance interaction between two uniformly accelerated atoms

2016

We study the resonance interaction between two uniformly accelerated identical atoms, one excited and the other in the ground state, prepared in a correlated (symmetric or antisymmetric) state and interacting with the scalar field or the electromagnetic field in the vacuum state. In this case (resonance interaction), the interatomic interaction is a second-order effect in the atom-field coupling. We separate the contributions of vacuum fluctuations and radiation reaction to the resonance energy shift of the system, and show that only radiation reaction contributes, while Unruh thermal fluctuations do not affect the resonance interaction. We also find that beyond a characteristic length scal…

Electromagnetic fieldPhysicsQuantum Physics010308 nuclear & particles physicsVacuum stateFOS: Physical sciencesResonanceGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyUnruh effectExcited state0103 physical sciencesAtomic physicsQuantum Physics (quant-ph)010306 general physicsGround stateUnruh effect Resonance interactions Quantum field theory in curved space-timeScalar fieldQuantum fluctuationPhysical Review A
researchProduct

Exact solution of generalized Tavis - Cummings models in quantum optics

1996

Quantum inverse methods are developed for the exact solution of models which describe N two-level atoms interacting with one mode of the quantized electromagnetic field containing an arbitrary number of excitations M. Either a Kerr-type nonlinearity or a Stark-shift term can be included in the model, and it is shown that these two cases can be mapped from one to the other. The method of solution provides a general framework within which many related problems can similarly be solved. Explicit formulae are given for the Rabi splitting of the models for some N and M, on- and off-resonance. It is also shown that the solution of the pure Tavis - Cummings model can be reduced to solving a homogen…

Electromagnetic fieldQuantum opticsExplicit formulaeGeneral Physics and AstronomyExact differential equationStatistical and Nonlinear PhysicsNonlinear systemExact solutions in general relativityQuantum mechanicsOrdinary differential equationQuantumComputer Science::DatabasesMathematical PhysicsMathematicsMathematical physicsJournal of Physics A: Mathematical and General
researchProduct

Integral display for non-static observers

2017

We propose to combine the Kinect and the Integral-Imaging technologies for the implementation of Integral Display. The Kinect device permits the determination, in real time, of (x,y,z) position of the observer relative to the monitor. Due to the active condition of its IR technology, the Kinect provides the observer position even in dark environments. On the other hand, SPOC 2.0 algorithm permits to calculate microimages adapted to the observer 3D position. The smart combination of these two concepts permits the implementation, for the first time we believe, of an Integral Display that provides the observer with color 3D images of real scenes that are viewed with full parallax and which are…

EngineeringIntegral imagingbusiness.industryComputer graphics (images)ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONComputer visionObserver (special relativity)Artificial intelligenceÒpticabusinessParallax
researchProduct