Search results for " relativity"
showing 10 items of 1158 documents
Dispersion Interactions between Neutral Atoms and the Quantum Electrodynamical Vacuum
2018
Dispersion interactions are long-range interactions between neutral ground-state atoms or molecules, or polarizable bodies in general, due to their common interaction with the quantum electromagnetic field. They arise from the exchange of virtual photons between the atoms, and, in the case of three or more atoms, are not additive. In this review, after having introduced the relevant coupling schemes and effective Hamiltonians, as well as properties of the vacuum fluctuations, we~outline the main properties of dispersion interactions, both in the nonretarded (van der Waals) and retarded (Casimir--Polder) regime. We then discuss their deep relation with the existence of the vacuum fluctuation…
Van der Waals and resonance interactions between accelerated atoms in vacuum and the Unruh effect
2017
We discuss different physical effects related to the uniform acceleration of atoms in vacuum, in the framework of quantum electrodynamics. We first investigate the van der Waals/Casimir-Polder dispersion and resonance interactions between two uniformly accelerated atoms in vacuum. We show that the atomic acceleration significantly affects the van der Waals force, yielding a different scaling of the interaction with the interatomic distance and an explicit time dependence of the interaction energy. We argue how these results could allow for an indirect detection of the Unruh effect through dispersion interactions between atoms. We then consider the resonance interaction between two accelerat…
Classical electromagnetic radiation in noninertial reference frames
1991
Customarily electromagnetic radiation is defined with reference to some inertial laboratory frame. But such a definition is too narrow to be applicable to questions concerning accelerated observers,e.g. why an accelerated observer does not receive radiation from a co-accelerating charge. It is shown in this paper that a radiation concept introduced for inertial observers by Rohrlich and Teitelboim allows an extension to noninertial (accelerating and rotating) reference frames in a natural way. The generalized concept is explicitly dependent on the proper acceleration and the rotation of the observer’s laboratory frame. The case of radiation due to an accelerated point charge is treated in f…
Generalized Einstein-Maxwell field equations in the Palatini formalism
2013
We derive a new set of field equations within the framework of the Palatini formalism.These equations are a natural generalization of the Einstein-Maxwell equations which arise by adding a function $\mathcal{F}(\mathcal{Q})$, with $\mathcal{Q}\equiv F^{\alpha\beta}F_{\alpha\beta}$ to the Palatini Lagrangian $f(R,Q)$.The result we obtain can be viewed as the coupling of gravity with a nonlinear extension of the electromagnetic field.In addition,a new method is introduced to solve the algebraic equation associated to the Ricci tensor.
The electromagnetic field of an accelerated charge in the proper reference frame of a noninertial observer
1989
The Lienard-Wiechert formulae for the electric and magnetic fields of an accelerated charge moving along an arbitrary world-line are generalized so that they can be applied by noninertial observers using accelerating and rotating reference frames. For this purpose, a relativistic coordinate-independent formalism suggested by DeFacio, Dennis and Eetzloff is extended to the description of all kinematical aspects required in the theory of the retarded fields of a point charge. The generalized Lienard-Wiechert formula is applied to a number of special situations, demonstrating that it allows a lucid and concise treatment of a number of subtle problems such as the role of the «relativity of acce…
The role of the ergosphere in the Blandford-Znajek process
2012
The Blandford-Znajek process, one of the most promising model for powering the relativistic jets from black holes, was initially introduced as a mechanism in which the magnetic fields extract energy from a rotating black hole. We study the evolution of force-free electromagnetic fields on regular spacetimes with an ergosphere, which are generated by rapidly rotating stars. Our conclusive results confirm previous works, claiming that the Blandford-Znajek mechanism is not directly related to the horizon of the black hole. We also show that the radiated energy depends exponentially on the compactness of the star.
Soliton Solutions with Real Poles in the Alekseev formulation of the Inverse-Scattering method
1999
A new approach to the inverse-scattering technique of Alekseev is presented which permits real-pole soliton solutions of the Ernst equations to be considered. This is achieved by adopting distinct real poles in the scattering matrix and its inverse. For the case in which the electromagnetic field vanishes, some explicit solutions are given using a Minkowski seed metric. The relation with the corresponding soliton solutions that can be constructed using the Belinskii-Zakharov inverse-scattering technique is determined.
Nonthermal effects of acceleration in the resonance interaction between two uniformly accelerated atoms
2016
We study the resonance interaction between two uniformly accelerated identical atoms, one excited and the other in the ground state, prepared in a correlated (symmetric or antisymmetric) state and interacting with the scalar field or the electromagnetic field in the vacuum state. In this case (resonance interaction), the interatomic interaction is a second-order effect in the atom-field coupling. We separate the contributions of vacuum fluctuations and radiation reaction to the resonance energy shift of the system, and show that only radiation reaction contributes, while Unruh thermal fluctuations do not affect the resonance interaction. We also find that beyond a characteristic length scal…
Exact solution of generalized Tavis - Cummings models in quantum optics
1996
Quantum inverse methods are developed for the exact solution of models which describe N two-level atoms interacting with one mode of the quantized electromagnetic field containing an arbitrary number of excitations M. Either a Kerr-type nonlinearity or a Stark-shift term can be included in the model, and it is shown that these two cases can be mapped from one to the other. The method of solution provides a general framework within which many related problems can similarly be solved. Explicit formulae are given for the Rabi splitting of the models for some N and M, on- and off-resonance. It is also shown that the solution of the pure Tavis - Cummings model can be reduced to solving a homogen…
Integral display for non-static observers
2017
We propose to combine the Kinect and the Integral-Imaging technologies for the implementation of Integral Display. The Kinect device permits the determination, in real time, of (x,y,z) position of the observer relative to the monitor. Due to the active condition of its IR technology, the Kinect provides the observer position even in dark environments. On the other hand, SPOC 2.0 algorithm permits to calculate microimages adapted to the observer 3D position. The smart combination of these two concepts permits the implementation, for the first time we believe, of an Integral Display that provides the observer with color 3D images of real scenes that are viewed with full parallax and which are…