Search results for " scienza delle costruzioni"

showing 10 items of 496 documents

Arbitrarily shaped plates analysis via Line Element-Less Method (LEM)

2018

Abstract An innovative procedure is introduced for the analysis of arbitrarily shaped thin plates with various boundary conditions and under generic transverse loading conditions. Framed into Line Element-less Method, a truly meshfree method, this novel approach yields the solution in terms of the deflection function in a straightforward manner, without resorting to any discretization, neither in the domain nor on the boundary. Specifically, expressing the deflection function through a series expansion in terms of harmonic polynomials, it is shown that the proposed method requires only the evaluation of line integrals along the boundary parametric equation. Further, minimization of appropri…

Arbitrary shapeSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciDiscretizationLine integral02 engineering and technology01 natural sciencesMeshfree method0203 mechanical engineeringDeflection (engineering)Boundary value problem0101 mathematicsParametric equationCivil and Structural EngineeringMathematicsMechanical EngineeringMathematical analysisBuilding and ConstructionFinite element method010101 applied mathematicsAlgebraic equationKirchoff plate020303 mechanical engineering & transportsHarmonic polynomialLine Element-Less MethodSeries expansionSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Stochastic differential calculus for wind-exposed structures with autoregressive continuous (ARC) filters

2008

In this paper, an alternative method to represent Gaussian stationary processes describing wind velocity fluctuations is introduced. The technique may be considered the extension to a time continuous description of the well-known discrete-time autoregressive model to generate Gaussian processes. Digital simulation of Gaussian random processes with assigned auto-correlation function is provided by means of a stochastic differential equation with time delayed terms forced by Gaussian white noise. Solution of the differential equation is a specific sample of the target Gaussian wind process, and in this paper it describes a digitally obtained record of the wind turbolence. The representation o…

Autoregressive continuous (ARC) modelRenewable Energy Sustainability and the EnvironmentStochastic processMechanical EngineeringGaussianOrnstein–Uhlenbeck processGaussian random fieldStochastic differential equationsymbols.namesakeQuasi-static theoryAutoregressive modelFourier transformsymbolsGaussian functionCalculusStochastic differential calculuApplied mathematicsGaussian random processeSettore ICAR/08 - Scienza Delle CostruzioniGaussian processCivil and Structural EngineeringMathematicsJournal of Wind Engineering and Industrial Aerodynamics
researchProduct

SHAKEDOWN ANALYSIS BY BEM

2000

In the ambit of the symmetric Galerkin boundary element formulation the statical shakedown load multiplier and the limit analysis are reformulated making use of macrozone modelling. The subdivision of the domain into macroelements makes it possible to deal with piecewise homogeneous materials of the body. For each macroelement a discretization of the boundary and a subdivision of the domain into portions called cells are performed in order to introduce the unknowns (i.e. traction and displacement discontinuities) on the boundary and material plastic laws appropriately interpolated. The weighed regularity imposed between adjacent macroelements produces algebraic operators which are symmetric…

BEM SGBEM Plasticity ShakedownSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

FORMULAZIONE SIMMETRICA DEL BEM NELL' ANALISI ELASTICA DI SISTEMI LASTRE- PIASTRE

2011

BEMANALISI ELASTICALASTRE- PIASTRESettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Performance of Steel Fibrous Reinforced Concrete Corbels Subjected to Vertical and Horizontal Loads

2009

A softened strut-and-tie macromodel able to reproduce the flexural behavior of corbels in plain and fibrous concrete and with the presence of steel bars, including softening of compressed struts and yielding of main and secondary steel bars, is presented in this paper. The main focus of the proposed model is the determination of the load-deflection curves of corbels subjected to the coupled effects of vertical and horizontal forces bearing in mind the influence of the type of concrete (normal or high strength), of the fiber percentage and of the arrangement and percentage of the main and secondary (horizontal stirrup) steel bars. A validation of the proposed model is made therefore with ref…

Bearing (mechanical)Materials scienceHorizontal and verticalbusiness.industryMechanical EngineeringBuilding and ConstructionStructural engineeringFiber-reinforced concretereinforced concreteStirruplaw.inventionFlexural strengthsteel fiberMechanics of MaterialslawCorbelShear strengthGeneral Materials ScienceGeotechnical engineeringshear strengthSettore ICAR/08 - Scienza Delle CostruzionibusinessSofteningCivil and Structural EngineeringJournal of Structural Engineering
researchProduct

Evaluation of the bending behaviour of laminated glass beams via electronic speckle pattern interferometry

2017

The paper is devoted to the experimental analysis of the kinematical and mechanical behaviour of laminated glass beam structures. In particular, the utilized laminated glass specimens are composed of two glass layers bonded by a polymer layer constituted by Ethylene-vinyl acetate whose thickness has been nominally considered as constant for all the specimens. The experimental behaviour of the analyzed specimens is deduced by applying Electronic Speckle- Pattern Interferometry technique; actually, among optical methods this technique (handled by phase-stepping technique) is very effective to obtain a full-field displacement map and to numerically achieve the longitudinal strain. In particula…

Bending behaviourThin layersMaterials scienceESPIInterlayerGeneral Chemical EngineeringExperimental analysiMechanical EngineeringEthylene-Vinyl Acetate (EVA)Laminated glaMultilayer beamBendingStress (mechanics)InterferometryEquivalent thickneElectronic speckle pattern interferometryModeling and SimulationPure bendingForensic engineeringChemical Engineering (all)Composite materialElectrical and Electronic EngineeringLaminated glassSettore ICAR/08 - Scienza Delle CostruzioniBeam (structure)
researchProduct

Power-Laws hereditariness of biomimetic ceramics for cranioplasty neurosurgery

2019

Abstract We discuss the hereditary behavior of hydroxyapatite-based composites used for cranioplasty surgery in the context of material isotropy. We classify mixtures of collagen and hydroxiapatite composites as biomimetic ceramic composites with hereditary properties modeled by fractional-order calculus. We assume isotropy of the biomimetic ceramic is assumed and provide thermodynamic of restrictions for the material parameters. We exploit the proposed formulation of the fractional-order isotropic hereditariness further by means of a novel mechanical hierarchy corresponding exactly to the three-dimensional fractional-order constitutive model introduced.

Biomimetic materialsMaterials scienceApplied MathematicsMechanical Engineeringmedicine.medical_treatmentPhysics::Medical PhysicsConstitutive equationIsotropyContext (language use)02 engineering and technology021001 nanoscience & nanotechnologyPower lawCranioplastyBiomimetic materials Cranioplasty Fractional calculus Isotropic hereditariness Power-law hereditariness020303 mechanical engineering & transports0203 mechanical engineeringMechanics of Materialsvisual_artvisual_art.visual_art_mediummedicineCeramicComposite material0210 nano-technologySettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Wave propagation in 1D elastic solids in presence of long-range central interactions

2011

Abstract In this paper wave propagation in non-local elastic solids is examined in the framework of the mechanically based non-local elasticity theory established by the author in previous papers. It is shown that such a model coincides with the well-known Kroner–Eringen integral model of non-local elasticity in unbounded domains. The appeal of the proposed model is that the mechanical boundary conditions may easily be imposed because the applied pressure at the boundaries of the solid must be equilibrated by the Cauchy stress. In fact, the long-range forces between different volume elements are modelled, in the body domain, as central body forces applied to the interacting elements. It is …

Body forceAcoustics and UltrasonicsCONTINUAWave propagationMechanical EngineeringWeak solutionMODELSElastic energyGRADIENT ELASTICITYWeak formulationElasticity (physics)Condensed Matter PhysicsWave equationMEDIANONLOCAL ELASTICITYClassical mechanicsMechanics of MaterialsBoundary value problemSettore ICAR/08 - Scienza Delle CostruzioniMathematicsJournal of Sound and Vibration
researchProduct

Variational Aspects of the Physically-Based Approach to 3D Non-Local Continuum Mechanics

2010

This paper deals with the generalization to three-dimensional elasticity of the physically-based approach to non-local mechanics, recently proposed by the authors in one-dimensional case. The proposed model assumes that the equilibrium of a volume element is attained by contact forces between adjacent elements and by long-range central forces exerted by non-adjacent elements. Specifically, the long-range forces are modeled as central body forces depending on the relative displacements between the centroids of the volume elements, measured along the line connecting the centroids. Furthermore, the long-range forces are assumed to be proportional to a proper, material-dependent, distance-decay…

Body forceMaterials scienceLong-Range InteractionContinuum mechanicsMechanical EngineeringElasticity (physics)Condensed Matter PhysicsContact forceClassical mechanicsCentral forceMechanics of MaterialsElastic Potential EnergyBounded functionFractional CalculusGeneral Materials ScienceBoundary value problemVolume elementNon-Local ElasticitySettore ICAR/08 - Scienza Delle CostruzioniMaterials Science Forum
researchProduct

Physically-Based Approach to the Mechanics of Strong Non-Local Linear Elasticity Theory

2009

In this paper the physically-based approach to non-local elasticity theory is introduced. It is formulated by reverting the continuum to an ensemble of interacting volume elements. Interactions between adjacent elements are classical contact forces while long-range interactions between non-adjacent elements are modelled as distance-decaying central body forces. The latter are proportional to the relative displacements rather than to the strain field as in the Eringen model and subsequent developments. At the limit the displacement field is found to be governed by an integro-differential equation, solved by a simple discretization procedure suggested by the underlying mechanical model itself…

Body forceNon-local elasticityDiscretizationField (physics)Mechanical EngineeringLinear elasticityConstitutive equationMathematical analysisCentral volume forceEquivalent mechanical modelThermodynamic consistencyContact forceLong-range interactionMechanics of MaterialsDisplacement fieldGeneral Materials ScienceBoundary value problemSettore ICAR/08 - Scienza Delle CostruzioniMathematicsJournal of Elasticity
researchProduct