6533b82ffe1ef96bd1294755

RESEARCH PRODUCT

Power-Laws hereditariness of biomimetic ceramics for cranioplasty neurosurgery

Luca DeseriEmanuela BolognaMassimiliano ZingalesFrancesca Graziano

subject

Biomimetic materialsMaterials scienceApplied MathematicsMechanical Engineeringmedicine.medical_treatmentPhysics::Medical PhysicsConstitutive equationIsotropyContext (language use)02 engineering and technology021001 nanoscience & nanotechnologyPower lawCranioplastyBiomimetic materials Cranioplasty Fractional calculus Isotropic hereditariness Power-law hereditariness020303 mechanical engineering & transports0203 mechanical engineeringMechanics of Materialsvisual_artvisual_art.visual_art_mediummedicineCeramicComposite material0210 nano-technologySettore ICAR/08 - Scienza Delle Costruzioni

description

Abstract We discuss the hereditary behavior of hydroxyapatite-based composites used for cranioplasty surgery in the context of material isotropy. We classify mixtures of collagen and hydroxiapatite composites as biomimetic ceramic composites with hereditary properties modeled by fractional-order calculus. We assume isotropy of the biomimetic ceramic is assumed and provide thermodynamic of restrictions for the material parameters. We exploit the proposed formulation of the fractional-order isotropic hereditariness further by means of a novel mechanical hierarchy corresponding exactly to the three-dimensional fractional-order constitutive model introduced.

10.1016/j.ijnonlinmec.2019.01.008http://hdl.handle.net/10447/485568