0000000000153463

AUTHOR

Luca Deseri

0000-0002-7272-728x

A mechanical picture of fractional-order Darcy equation

Abstract In this paper the authors show that fractional-order force-flux relations are obtained considering the flux of a viscous fluid across an elastic porous media. Indeed the one-dimensional fluid mass transport in an unbounded porous media with power-law variation of geometrical and physical properties yields a fractional-order relation among the ingoing flux and the applied pressure to the control section. As a power-law decay of the physical properties from the control section is considered, then the flux is related to a Caputo fractional derivative of the pressure of order 0 ⩽ β ≤ 1 . If, instead, the physical properties of the media show a power-law increase from the control sectio…

research product

THE STATE OF FRACTIONAL HEREDITARY MATERIALS (FHM)

The widespread interest on the hereditary behavior of biological and bioinspired materials motivates deeper studies on their macroscopic ``minimal" state. The resulting integral equations for the detected relaxation and creep power-laws, of exponent $\beta$, are characterized by fractional operators. Here strains in $SBV_{loc}$ are considered to account for time-like jumps. Consistently, starting from stresses in $L_{loc}^{r}$, $r\in [1,\beta^{-1}], \, \, \beta\in(0,1)$ we reconstruct the corresponding strain by extending a result in [42]. The ``minimal" state is explored by showing that different histories delivering the same response are such that the fractional derivative of their differ…

research product

Power-Laws hereditariness of biomimetic ceramics for cranioplasty neurosurgery

Abstract We discuss the hereditary behavior of hydroxyapatite-based composites used for cranioplasty surgery in the context of material isotropy. We classify mixtures of collagen and hydroxiapatite composites as biomimetic ceramic composites with hereditary properties modeled by fractional-order calculus. We assume isotropy of the biomimetic ceramic is assumed and provide thermodynamic of restrictions for the material parameters. We exploit the proposed formulation of the fractional-order isotropic hereditariness further by means of a novel mechanical hierarchy corresponding exactly to the three-dimensional fractional-order constitutive model introduced.

research product

Fractional hereditariness of lipid membranes: Instabilities and linearized evolution

In this work lipid ordering phase changes arising in planar membrane bilayers is investigated both accounting for elas- ticity alone and for effective viscoelastic response of such assemblies. The mechanical response of such membranes is studied by minimizing the Gibbs free energy which penalizes perturbations of the changes of areal stretch and their gradients only [1]. As material instabilities arise whenever areal stretches characterizing homogeneous configurations lie inside the spinoidal zone of the free energy density, bifurcations from such configurations are shown to occur as oscillatory perturbations of the in-plane displacement. Experimental observations [2] show a power-law in-pl…

research product

Fractional-Order Theory of Thermoelasticity. II: Quasi-Static Behavior of Bars

This work aims to shed light on the thermally-anomalous coupled behavior of slightly deformable bodies, in which the strain is additively decomposed in an elastic contribution and in a thermal part. The macroscopic heat flux turns out to depend upon the time history of the corresponding temperature gradient, and this is the result of a multiscale rheological model developed in Part I of the present study, thereby resembling a long-tail memory behavior governed by a Caputo's fractional operator. The macroscopic constitutive equation between the heat flux and the time history of the temperature gradient does involve a power law kernel, resulting in the anomaly mentioned previously. The interp…

research product

A fractional-order model for aging materials: An application to concrete

Abstract In this paper, the hereditariness of aging materials is modeled within the framework of fractional calculus of variable order. A relevant application is made for the long-term behavior of concrete, for which the creep function is evaluated with the aid of Model B3. The corresponding relaxation function is derived through the Volterra iterated kernels and a comparison with the numerically-obtained relaxation function of Model B3 is also reported. The proposed fractional hereditary aging model (FHAM) for concretes leads to a relaxation function that fully agrees with the well-established Model B3. Furthermore, the FHAM takes full advantage of the formalism of fractional-order calculu…

research product

Fractional-order nonlinear hereditariness of tendons and ligaments of the human knee

In this paper the authors introduce a nonlinear model of fractional-order hereditariness used to capture experimental data obtained on human tendons of the knee. Creep and relaxation data on fibrous tissues have been obtained and fitted with logarithmic relations that correspond to power-laws with nonlinear dependence of the coefficients. The use of a proper nonlinear transform allows one to use Boltzmann superposition in the transformed variables yielding a fractional-order model for the nonlinear material hereditariness. The fundamental relations among the nonlinear creep and relaxation functions have been established, and the results from the equivalence relations have been contrasted wi…

research product

A fractional order theory of poroelasticity

Abstract We introduce a time memory formalism in the flux-pressure constitutive relation, ruling the fluid diffusion phenomenon occurring in several classes of porous media. The resulting flux-pressure law is adopted into the Biot’s formulation of the poroelasticity problem. The time memory formalism, useful to capture non-Darcy behavior, is modeled by the Caputo’s fractional derivative. We show that the time-evolution of both the degree of settlement and the pressure field is strongly influenced by the order of Caputo’s fractional derivative. Also a numerical experiment aiming at simulating the confined compression test poroelasticity problem of a sand sample is performed. In such a case, …

research product

Fractional-order theory of thermoelasticicty. I: Generalization of the Fourier equation

The paper deals with the generalization of Fourier-type relations in the context of fractional-order calculus. The instantaneous temperature-flux equation of the Fourier-type diffusion is generalized, introducing a self-similar, fractal-type mass clustering at the micro scale. In this setting, the resulting conduction equation at the macro scale yields a Caputo's fractional derivative with order [0,1] of temperature gradient that generalizes the Fourier conduction equation. The order of the fractional-derivative has been related to the fractal assembly of the microstructure and some preliminary observations about the thermodynamical restrictions of the coefficients and the state functions r…

research product

Free energy and states of fractional-order hereditariness

AbstractComplex materials, often encountered in recent engineering and material sciences applications, show no complete separations between solid and fluid phases. This aspect is reflected in the continuous relaxation time spectra recorded in cyclic load tests. As a consequence the material free energy cannot be defined in a unique manner yielding a significative lack of knowledge of the maximum recoverable work that can extracted from the material. The non-uniqueness of the free energy function is removed in the paper for power-laws relaxation/creep function by using a recently proposed mechanical analogue to fractional-order hereditariness.

research product

Power-law hereditariness of hierarchical fractal bones

SUMMARY In this paper, the authors introduce a hierarchic fractal model to describe bone hereditariness. Indeed, experimental data of stress relaxation or creep functions obtained by compressive/tensile tests have been proved to be fit by power law with real exponent 0 ⩽ β ⩽1. The rheological behavior of the material has therefore been obtained, using the Boltzmann–Volterra superposition principle, in terms of real order integrals and derivatives (fractional-order calculus). It is shown that the power laws describing creep/relaxation of bone tissue may be obtained by introducing a fractal description of bone cross-section, and the Hausdorff dimension of the fractal geometry is then related …

research product

Quasi-Fractional Models of Human Tendons Hereditariness

In this study, the authors, after collecting a series of experimental evidences following a creep and relaxation tendon campaign, propose a non-linear model of the viscoelastic behavior of the tendons. The ligaments investigated are the patellars and the hamstrings. The analytical model proposed by the authors aims to explain the non-linear hereditary behavior of these tissues and proposes an approach with which to develop a hereditary fractional-order non-linear model.

research product