6533b855fe1ef96bd12b1415
RESEARCH PRODUCT
Free energy and states of fractional-order hereditariness
Luca DeseriMassimiliano ZingalesMario Di Paolasubject
Work (thermodynamics)Materials scienceMaterial stateFractional orderMaterial scienceSpectral lineDissipation rateMaterials Science(all)Modelling and SimulationGeneral Materials ScienceComplex materials; Continuous relaxation; Dissipation rates; Fractional derivatives; Fractional order; Free energy function; Material science; Power law creepFree energyPower-law creep/relaxationComplex materialbusiness.industryMechanical EngineeringApplied MathematicsRelaxation (NMR)Order (ring theory)Free energy functionFractional derivativesStructural engineeringFunction (mathematics)MechanicsFractional derivativeCondensed Matter PhysicsFractional calculusContinuous relaxationCreepMechanics of MaterialsModeling and SimulationPower law creepbusinessSettore ICAR/08 - Scienza Delle CostruzioniEnergy (signal processing)description
AbstractComplex materials, often encountered in recent engineering and material sciences applications, show no complete separations between solid and fluid phases. This aspect is reflected in the continuous relaxation time spectra recorded in cyclic load tests. As a consequence the material free energy cannot be defined in a unique manner yielding a significative lack of knowledge of the maximum recoverable work that can extracted from the material. The non-uniqueness of the free energy function is removed in the paper for power-laws relaxation/creep function by using a recently proposed mechanical analogue to fractional-order hereditariness.
year | journal | country | edition | language |
---|---|---|---|---|
2014-09-01 | International Journal of Solids and Structures |