Search results for " signaling."

showing 10 items of 1032 documents

ceRNA Network Regulation of TGF-β, WNT, FOXO, Hedgehog Pathways in the Pharynx of Ciona robusta

2021

The transforming growth factor-β (TGF-β) family of cytokines performs a multifunctional signaling, which is integrated and coordinated in a signaling network that involves other pathways, such as Wintless, Forkhead box-O (FOXO) and Hedgehog and regulates pivotal functions related to cell fate in all tissues. In the hematopoietic system, TGF-β signaling controls a wide spectrum of biological processes, from immune system homeostasis to the quiescence and self-renewal of hematopoietic stem cells (HSCs). Recently an important role in post-transcription regulation has been attributed to two type of ncRNAs: microRNAs and pseudogenes. Ciona robusta, due to its philogenetic position close to verte…

0301 basic medicineascidianpseudogenepseudogeneslcsh:ChemistryTransforming Growth Factor betaProtein Interaction MappingHomeostasisRNA-Seqlcsh:QH301-705.53' Untranslated RegionsSpectroscopyTissue homeostasisForkhead Box Protein O1Wnt signaling pathwayHigh-Throughput Nucleotide Sequencingvirus diseasesGeneral Medicinefemale genital diseases and pregnancy complicationsComputer Science ApplicationsCell biologyNGSStem cellTGF-βCell fate determinationBiologyCatalysisArticleInorganic ChemistryWNT03 medical and health sciencesmicroRNAAnimalsCell LineageHedgehog ProteinsTGF-Physical and Theoretical ChemistryMolecular BiologyHedgehogneoplasmsmiRNA030102 biochemistry & molecular biologyCompeting endogenous RNAOrganic ChemistryfungiComputational BiologyHematopoiesisWnt ProteinsMicroRNAs030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Gene Expression RegulationImmune SystemPharynxFOXOCionaTransforming growth factorInternational Journal of Molecular Sciences
researchProduct

Nobiletin and xanthohumol sensitize colorectal cancer stem cells to standard chemotherapy

2021

Simple Summary Colorectal cancer stem cells (CR-CSCs) play a pivotal role in the therapy resistance and relapse of CRC patients. Herein we demonstrate that new treatment approaches comprising polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively, hamper the viability of CR-CSCs as well as synergizing with 5-fluorouracil and oxaliplatin (FOX)-based chemotherapy. Extract fractions containing Nobiletin and Xanthohumol, in combination with chemotherapy, decreased stemness properties of CR-CSCs and restrained the outgrowth of chemoresistant metastatic CR-CSCs. These data pinpoint Nobiletin and Xanthohumol as efficacious anti-cancer compounds in…

0301 basic medicinecancer stem cellCancer ResearchAnti-cancer therapyColorectal cancermedicine.medical_treatmentArticleNobiletin03 medical and health sciences0302 clinical medicineCancer stem cellSettore MED/04 - PATOLOGIA GENERALEMedicineflavonoidClonogenic assayRC254-282FlavonoidsChemotherapybusiness.industryCancer stem cellsWnt signaling pathwayXanthohumolNeoplasms. Tumors. Oncology. Including cancer and carcinogensCell cyclemedicine.diseaseColorectal cancerOxaliplatin030104 developmental biologyOncologyflavonoids; nobiletin; xanthohumol; anti-cancer therapy; cancer stem cells; colorectal cancer; natural biofunctional molecules030220 oncology & carcinogenesisCancer researchNatural biofunctional moleculesStem cellbusinessanti-cancer therapy; cancer stem cells; colorectal cancer; flavonoids; natural biofunctional molecules; nobiletin; xanthohumolmedicine.drug
researchProduct

Dynamic compartmentalization of calcium channel signalling in neurons.

2020

Calcium fluxes through the neuronal membrane are strictly limited in time due to biophysical properties of voltage-gated and ligand-activated ion channels and receptors. Being embedded into the crowded dynamic environment of biological membranes, Ca2+-permeable receptors and channels undergo perpetual spatial rearrangement, which enables their temporary association and formation of transient signalling complexes. Thus, efficient calcium-mediated signal transduction requires mechanisms to support very precise spatiotemporal alignment of the calcium source and Ca2+-binding lipids and proteins in a highly dynamic environment. The mobility of calcium channels and calcium-sensing proteins themse…

0301 basic medicinechemistry.chemical_elementCalcium03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineCalcium fluxAnimalsHumansCalcium SignalingIon channelCalcium signalingPharmacologyNeuronsLateral mobility ; Voltage-gated calcium channels ; Nanodomain ; Calcium signalling ; STIM/OraiNeuronal PlasticityVoltage-dependent calcium channelEndoplasmic reticulumCalcium channelCell MembraneBiological membraneDendrites030104 developmental biologychemistryBiophysicsCalcium Channels030217 neurology & neurosurgeryNeuropharmacology
researchProduct

Alterations in Tight- and Adherens-Junction Proteins Related to Glaucoma Mimicked in the Organotypically Cultivated Mouse Retina Under Elevated Press…

2020

Purpose To scrutinize alterations in cellular interactions and cell signaling in the glaucomatous retina, mouse retinal explants were exposed to elevated pressure. Methods Retinal explants were prepared from C57bl6 mice and cultivated in a pressure chamber under normotensive (atmospheric pressure + 0 mm Hg), moderately elevated (30 mm Hg), and highly elevated (60 mm Hg) pressure conditions. The expression levels of proteins involved in the formation of tight junctions (zonula occludens 1 [ZO-1], occludin, and claudin-5) and adherens junctions (VE-cadherin and β-catenin) and in cell-signaling cascades (Cdc42 and activated Cdc42 kinase 1 [ACK1]), as well as the expression levels of the growth…

0301 basic medicineelevated pressureBlotting WesternVimentinReal-Time Polymerase Chain ReactionOccludinRetinaTight JunctionsAdherens junctionMice03 medical and health scienceschemistry.chemical_compoundOrgan Culture Techniques0302 clinical medicineAntigens CDOccludinmedicinecell signalingAnimalscell contactsEye Proteinscdc42 GTP-Binding ProteinReceptorretina explantsmousebeta CateninRetinabiologyTight junctionGlial fibrillary acidic proteinChemistryGlaucomaRetinalAdherens JunctionsProtein-Tyrosine KinasesCadherinsImmunohistochemistryCell biologyMice Inbred C57BLAtmospheric Pressure030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisZonula Occludens-1 Proteinbiology.proteinInvestigative Opthalmology & Visual Science
researchProduct

Evolutionary Analysis of DELLA-Associated Transcriptional Networks

2017

DELLA proteins are transcriptional regulators present in all land plants which have been shown to modulate the activity of over 100 transcription factors in Arabidopsis, involved in multiple physiological and developmental processes. It has been proposed that DELLAs transduce environmental information to pre-wired transcriptional circuits because their stability is regulated by gibberellins (GAs), whose homeostasis largely depends on environmental signals. The ability of GAs to promote DELLA degradation coincides with the origin of vascular plants, but the presence of DELLAs in other land plants poses at least two questions: what regulatory properties have DELLAs provided to the behavior of…

0301 basic medicineevo–devoChlamydomonas reinhardtiiPlant ScienceBiologylcsh:Plant culturePhyscomitrella patensGene co-expression networks03 medical and health sciencesTranscriptional regulationArabidopsisBotanyTranscriptional regulationBIOQUIMICA Y BIOLOGIA MOLECULARArabidopsis thalianalcsh:SB1-1110Transcription factorIntegrative molecular systems biologyOriginal ResearchEvo-devofood and beveragesPlant signalingbiology.organism_classificationCell biologyGENETICA030104 developmental biologyEvolutionary developmental biologyFunction (biology)
researchProduct

The biology of color

2017

In living color Animals live in a colorful world, but we rarely stop to think about how this color is produced and perceived, or how it evolved. Cuthill et al. review how color is used for social signals between individual animals and how it affects interactions with parasites, predators, and the physical environment. New approaches are elucidating aspects of animal coloration, from the requirements for complex cognition and perception mechanisms to the evolutionary dynamics surrounding its development and diversification. Science , this issue p. eaan0221

0301 basic medicinegenetic structuresColor functionEvolutionSpeciationColor perceptionBiologyColor functionSocial signaling03 medical and health sciencesUltraviolet lightStructural colorationAnimalsPhotoreceptor CellsEvolutionary dynamicsOrganismCognitive scienceMultidisciplinaryColor pigmentsColor VisionEcologyMechanism (biology)PigmentationReproductionAnimal colorationPigments BiologicalBiological Evolution030104 developmental biologyCamouflageColor Perception
researchProduct

New Highlights of Resveratrol: A Review of Properties against Ocular Diseases

2021

Eye diseases are currently a major public health concern due to the growing number of cases resulting from both an aging of populations and exogenous factors linked to our lifestyles. Thus, many treatments including surgical pharmacological approaches have emerged, and special attention has been paid to prevention, where diet plays a preponderant role. Recently, potential antioxidants such as resveratrol have received much attention as potential tools against various ocular diseases. In this review, we focus on the mechanisms of resveratrol against ocular diseases, in particular age-related macular degeneration, glaucoma, cataract, diabetic retinopathy, and vitreoretinopathy. We analyze, in…

0301 basic medicinegenetic structuresEye DiseasesReviewDiseaseresveratrolAMDResveratrolBioinformaticsAntioxidantsEpigenesis Geneticlcsh:Chemistryangiogenesischemistry.chemical_compoundDrug Delivery Systems0302 clinical medicineSirtuin 1Gene Regulatory Networkslcsh:QH301-705.5Spectroscopy3309.20 Propiedades de Los AlimentosClinical Trials as TopicGeneral MedicineDiabetic retinopathyComputer Science Applicationsdiabetic retinopathycataract3201.09 OftalmologíanutraceuticalCatalysisInorganic Chemistry03 medical and health sciences2302 BioquímicamedicineHumansPhysical and Theoretical ChemistryMolecular BiologypolyphenolsMolecular signalingbusiness.industryocular diseasesOrganic ChemistryeyesMacular degenerationmedicine.diseaseeye diseasesClinical trial030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Gene Expression Regulationchemistry030221 ophthalmology & optometryReactive Oxygen SpeciesbusinessInternational Journal of Molecular Sciences
researchProduct

Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves.

2017

When a person is in a deep non-dreaming sleep, neurons in their brain alternate slowly between periods of silence and periods of activity. This gives rise to low-frequency brain rhythms called slow waves, which are thought to help stabilize memories. Slow wave activity can be detected on multiple scales, from the pattern of electrical impulses sent by an individual neuron to the collective activity of the brain’s entire outer layer, the cortex. But does slow wave activity in an individual group of neurons in the cortex affect the activity of the rest of the brain? To find out, Schwalm, Schmid, Wachsmuth et al. took advantage of the fact that slow waves also occur under general anesthesia, a…

0301 basic medicinegenetic structuresQH301-705.5Scienceresting-state functional connectivityThalamusslow waves ; BOLD fMRI ; calcium recordingsBiologybehavioral disciplines and activitiesGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences0302 clinical medicineRhythmslow wavesThalamusCortex (anatomy)medicineOscillation (cell signaling)Premovement neuronal activityAnimalsddc:610Calcium SignalingBOLD fMRIBiology (General)Functional MRICerebral CortexGeneral Immunology and MicrobiologyGeneral NeuroscienceQRGeneral MedicineHuman brainAnatomyMagnetic Resonance ImagingRatscalcium recordings030104 developmental biologymedicine.anatomical_structurenervous systemCerebral cortexMedicineRatNeuronInsightNeuroscience030217 neurology & neurosurgerypsychological phenomena and processesNeuroscienceeLife
researchProduct

Phosphorylated immunoreceptor tyrosine-based activation motifs and integrin cytoplasmic domains activate spleen tyrosine kinase via distinct mechanis…

2018

Spleen tyrosine kinase (Syk) is involved in cellular adhesion and also in the activation and development of hematopoietic cells. Syk activation induced by genomic rearrangement has been linked to certain T-cell lymphomas, and Syk inhibitors have been shown to prolong survival of patients with B-cell lineage malignancies. Syk is activated either by its interaction with a double-phosphorylated immunoreceptor tyrosine-based activation motif (pITAM), which induces rearrangements in the Syk structure, or by the phosphorylation of specific tyrosine residues. In addition to its immunoreceptor function, Syk is activated downstream of integrin pathways, and integrins bind to the same region in Syk a…

0301 basic medicinekinaasitCell signalingentsyymitIntegrinsintegrinIntegrinAmino Acid MotifsMutation MissenseSykPeptidechemical and pharmacologic phenomenaBiochemistryspleen tyrosine kinase (Syk)environment and public healthBiokemia solu- ja molekyylibiologia - Biochemistry cell and molecular biology03 medical and health sciencesProtein DomainsLääketieteen bioteknologia - Medical biotechnologyenzyme kineticshemic and lymphatic diseasescell signalingHumansSyk KinaseTyrosinePhosphorylationCell adhesionMolecular Biologychemistry.chemical_classificationsoluviestintäintegriinit030102 biochemistry & molecular biologybiologyChemistryta1182hemic and immune systemsCell Biology3. Good healthCell biologyEnzyme Activationenzymes and coenzymes (carbohydrates)030104 developmental biologyAmino Acid SubstitutionCytoplasmbiology.proteinPhosphorylationPeptidessurface plasmon resonance (SPR)Signal Transduction
researchProduct

The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases

2016

Nucleotide signaling molecules contribute to the regulation of cellular pathways. In the immune system, cyclic adenosine monophosphate (cAMP) is well established as a potent regulator of innate and adaptive immune cell functions. Therapeutic strategies to interrupt or enhance cAMP generation or effects have immunoregulatory potential in autoimmune and inflammatory disorders. Here, we provide an overview of the cyclic AMP axis and its role as a regulator of immune functions and discuss the clinical and translational relevance of interventions with these processes.

0301 basic medicinelcsh:Immunologic diseases. AllergyCell signalingT regulatory cellsImmunologyRegulatorT cellsTregsInflammationAutoimmunityReviewmedicine.disease_causeAutoimmunity03 medical and health scienceschemistry.chemical_compoundImmune systemmedicineCyclic AMPImmunology and AllergyCyclic adenosine monophosphateTregs; T regulatory CellsInflammationbusiness.industryCellular pathwaystargeted therapiesCell biology030104 developmental biologychemistryImmunologycAMP-dependent pathwaymedicine.symptombusinesslcsh:RC581-607Frontiers in Immunology
researchProduct