Search results for " spectroscopy"

showing 10 items of 6851 documents

X-ray diffraction and Raman spectroscopy studies in Na1/2Bi1/2TiO3-SrTiO3-PbTiO3 solid solutions

2016

The long and short range orders in 0.4Na1/2Bi1/2TiO3-(0.6-x)SrTiO3-xPbTiO3 solid solutions were studied by x-ray diffraction and Raman spectroscopy. X-ray diffraction patterns for these composition...

010302 applied physicsDiffractionMaterials scienceAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialssymbols.namesakeNuclear magnetic resonance0103 physical sciencesX-ray crystallographysymbols0210 nano-technologyRaman spectroscopySolid solutionFerroelectrics
researchProduct

Intrinsic nanostructures on the (001) surface of strontium titanate at low temperatures

2020

Atomically smooth (001) surfaces of SrTiO3 cut from the high-quality single crystals at two different miscut angles 0.9 and 7.0 deg between the real flat surfaces and crystallographic planes (001) were analyzed by means of the reflection high energy electron diffraction (RHEED) method from the room down to liquid helium temperatures. The diffraction patterns typical of the RHEED geometry close to ideal for a small miscut angle and those exhibiting distinct features of the specific periodicity associated with regular steps, which form due to the larger miscut angle, are presented. The surface symmetry and energetics were shown to impose differences in lattice parameters in parallel to a surf…

010302 applied physicsDiffractionMaterials scienceNanostructureReflection high-energy electron diffractionPhysics and Astronomy (miscellaneous)Condensed matter physicsGeneral Physics and Astronomy01 natural sciencesCondensed Matter::Materials Sciencesymbols.namesakechemistry.chemical_compoundchemistryElectron diffractionLattice (order)0103 physical sciencessymbolsStrontium titanate010306 general physicsRaman spectroscopySingle crystalLow Temperature Physics
researchProduct

Radial composition of single InGaN nanowires: a combined study by EDX, Raman spectroscopy, and X-ray diffraction

2013

010302 applied physicsDiffractionMaterials scienceNanostructureScatteringNanowireAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsEpitaxy01 natural sciencessymbols.namesakeCrystallography0103 physical sciencesX-ray crystallographysymbolsGeneral Materials Science0210 nano-technologyRaman spectroscopyMolecular beam epitaxyphysica status solidi (RRL) - Rapid Research Letters
researchProduct

Superparamagnetic recoverable flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposite: synthesis, characterization, mechanism and kinetic s…

2019

In the present research study, a simple method was developed for the synthesis of three-dimensional flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposites. The X-ray diffraction, Fourier transform infrared spectroscopy, scanning electronic microscopy, transmission electron microscope, vibrating sample magnetometer, dynamic laser scattering analyzer and UV–Vis diffuse reflection spectroscopy were employed for the characterization of structure, purity and morphology of the resultant samples. The degradation of indigo carmine as a model of organic dye pollutant is applied for photo-catalytic activity. The parameters which are affecting the efficiency of various parameters, such as;…

010302 applied physicsDiffractionNanocompositeMaterials scienceKineticsAnalytical chemistryElectronCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsflowerlike Fe3O4@Bi2O3 core-shell g-C3N4 superparamagnetic photocatalysischemistry.chemical_compoundIndigo carminechemistryTransmission electron microscopySettore CHIM/03 - Chimica Generale E Inorganica0103 physical sciencesSettore CHIM/07 - Fondamenti Chimici Delle TecnologieElectrical and Electronic EngineeringFourier transform infrared spectroscopySuperparamagnetism
researchProduct

Complex structural contribution of the morphotropic phase boundary in Na0.5Bi0.5TiO3 - CaTiO3 system

2019

Abstract The correlation between structure and dielectric properties of lead-free (1-x)Na0.5Bi0.5TiO3 - xCaTiO3 ((1-x)NBT - xCT) polycrystalline ceramics was investigated systematically by X-ray diffraction, combined with impedance spectroscopy for dielectric characterizations. The system shows high miscibility in the entire composition range. A morphotropic phase boundary (MPB), at 0.09 ≤ x

010302 applied physicsDiffractionPhase boundaryMaterials scienceProcess Chemistry and TechnologyThermodynamics02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural sciencesMiscibilitySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDielectric spectroscopyvisual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_medium[CHIM]Chemical SciencesCrystalliteCeramic0210 nano-technology
researchProduct

Effect of Cu doping on Ba0.95Pb0.05TiO3 electrical properties studied by means of electrical impedance spectroscopy

2019

The ceramics of 0.95BaTiO3–0.05PbTiO3+Xwt.%CuO (X = 0.05, 0.1, 1, 3) were prepared by a solid phase reaction. The structural and morphology studies were carried out by means of X-ray diffraction te...

010302 applied physicsDiffractionPhase reactionMaterials scienceMorphology (linguistics)Analytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsControl and Systems EngineeringCu dopingvisual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumCeramicElectrical and Electronic Engineering0210 nano-technologyElectrical impedance spectroscopyIntegrated Ferroelectrics
researchProduct

Bandgap behavior and singularity of the domain-induced light scattering through the pressure-induced ferroelectric transition in relaxor ferroelectri…

2018

[EN] In this letter, we have investigated the electronic structure of A(x)Ba(1-x)Nb(2)O(6) relaxor ferroelectrics on the basis of optical absorption spectroscopy in unpoled single crystals with A = Sr and Ca under high pressure. The direct character of the fundamental transition could be established by fitting Urbach's rule to the photon energy dependence of the absorption edge yielding bandgaps of 3.44(1) eV and 3.57(1) eV for A = Sr and Ca, respectively. The light scattering by ferroelectric domains in the pre-edge spectral range has been studied as a function of composition and pressure. After confirming with x-ray diffraction the occurrence of the previously observed ferroelectric to pa…

010302 applied physicsDiffractionPhase transitionMaterials sciencePhysics and Astronomy (miscellaneous)Absorption spectroscopyCondensed matter physics02 engineering and technologyPhoton energy021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityLight scatteringCRYSTALSTEMPERATURE-DEPENDENCEAbsorption edgeCALCIUM BARIUM NIOBATEFISICA APLICADA0103 physical sciencesDirect and indirect band gaps0210 nano-technologyCALCIUM BARIUM NIOBATE TEMPERATURE-DEPENDENCE CRYSTALS
researchProduct

Nonlinear optical response of bulk ZnO crystals with different content of intrinsic defects

2018

Abstract The nonlinear optical (NLO) properties of native defect-rich ZnO single crystals were studied in details within the excitation of the continuous wave (CW) and pulsed laser radiation at 532 nm (2.33 eV). Analysis of the experimental data of optical elastic scattering, Fourier transform infrared (FTIR), near infrared–visible–ultraviolet (NIR–Vis–UV) spectra recorded in reflection and absorption modes, and data of photoluminescence (PL) spectroscopy confirmed the contribution of both intrinsic defects and their clusters, being determined before by neutron diffraction and XRD analysis. It was shown that the high sensitivity of the NLO diagnostics via self-action of a laser beam is due …

010302 applied physicsElastic scatteringMaterials sciencePhotoluminescenceInfraredOrganic ChemistryNeutron diffraction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsAtomic and Molecular Physics and OpticsLight scatteringElectronic Optical and Magnetic MaterialsInorganic ChemistryWavelength0103 physical sciencesElectrical and Electronic EngineeringPhysical and Theoretical ChemistryFourier transform infrared spectroscopy0210 nano-technologySpectroscopySpectroscopyOptical Materials
researchProduct

Optical properties of InN nanocolumns: Electron accumulation at InN non‐polar surfaces and dependence on the growth conditions

2009

InN nanocolumns grown by plasma-assisted molecular beam epitaxy have been studied by photoluminescence (PL) and photoluminescence excitation (PLE). The PL peak energy was red-shifted with respect to the PLE onset and both energies were higher than the low temperature band-gap reported for InN. PL and PLE experiments for different excitation and detection energies indicated that the PL peaks were homogeneously broadened. This overall phenomenology has been attributed to the effects of an electron accumulation layer present atthe non-polar surfaces of the InN nanocolumns. Variations in the growth conditions modify the edge of the PLE spectra and the PL peak energies evidencing that the densit…

010302 applied physicsFree electron modelElectron densityPhotoluminescenceCondensed matter physicsAbsorption spectroscopyChemistry02 engineering and technologyElectron021001 nanoscience & nanotechnologyCondensed Matter PhysicsEpitaxy01 natural sciencesMolecular physics0103 physical sciencesPhotoluminescence excitation0210 nano-technologyMolecular beam epitaxyphysica status solidi c
researchProduct

Pressure-induced insulator-to-metal transition in α-SnWO4

2016

In-situ high-pressure W L1 and L3 edges x-ray absorption and mid-infrared spectroscopies complemented by first-principles calculations suggest the existence of pressure- induced insulator-to-metal transition in α-SnWO4 in the range of 5-7 GPa. Its origin is explained by a symmetrization of metal-oxygen octahedra due to a strong interaction of Sn 5s, W 5d and O 2p states along the b-axis direction, leading to a collapse of the band gap.

010302 applied physicsHistoryCondensed matter physicsAbsorption spectroscopyBand gapChemistryStrong interactionchemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSpectral lineComputer Science ApplicationsEducationMetalOctahedronvisual_art0103 physical sciencesvisual_art.visual_art_medium0210 nano-technologySpectroscopyTinJournal of Physics: Conference Series
researchProduct