Search results for " symmetric"
showing 10 items of 78 documents
Hermitian natural differential operators
1986
Comparison results for Hessian equations via symmetrization
2007
where the λ’s are the eigenvalues of the Hessian matrix D2u of u and Sk is the kth elementary symmetric function. For example, for k = 1, S1(Du) = 1u, while, for k = n, Sn(D 2u) = detD2u. Equations involving these operators, and some more general equations of the form F(λ1, . . . , λn) = f in , (1.2) have been widely studied by many authors, who restrict their considerations to convenient cones of solutions with respect to which the operator in (1.2) is elliptic. Following [25] we define the cone 0k of ellipticity for (1.1) to be the connected component containing the positive cone 0 = {λ ∈ R : λi > 0 ∀i = 1, . . . , n} of the set where Sk is positive. Thus 0k is an open, convex, symmetric…
Wormholes and nonsingular spacetimes in Palatinif(R)gravity
2015
We reconsider the problem of $f(R)$ theories of gravity coupled to Born-Infeld theory of electrodynamics formulated in a Palatini approach, where metric and connection are independent fields. By studying electrovacuum configurations in a static and spherically symmetric space-time, we find solutions which reduce to their Reissner-Nordstr\"om counterparts at large distances but undergo important non-perturbative modifications close to the center. Our new analysis reveals that the point-like singularity is replaced by a finite-size wormhole structure, which provides a geodesically complete and thus nonsingular space-time, despite the existence of curvature divergences at the wormhole throat. …
Flat synchronizations in spherically symmetric space-times
2010
It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-Lemaitre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.
Progressive symmetric erythro-keratosis associated with oligodontia, severe caries, disturbed hair growth and ectopic nail: a new syndrome?
2008
A 7-year-old girl had well-demarcated erythematous plaques covered with white pityriasiform scales which were symmetrically distributed and involved the extensor surfaces of the extremities as well as the abdomen, buttocks and face. Histological examination showed marked hyperkeratosis with parakeratosis, and a thickened granular cell layer, mild acanthosis and slight lymphocytic infiltration surrounding the papillary blood vessels, compatible with a diagnosis of progressive symmetrical erythrokeratodermia. Remarkably, a keratotic excrescence similar to a normal nail plate involved the tip of the nose since the age of 6 months. Moreover, occipital hairlessness, oligodontia and severe caries…
The Duality of Entropy/Extropy, and Completion of the Kullback Information Complex
2018
The refinement axiom for entropy has been provocative in providing foundations of information theory, recognised as thoughtworthy in the writings of both Shannon and Jaynes. A resolution to their concerns has been provided recently by the discovery that the entropy measure of a probability distribution has a dual measure, a complementary companion designated as &ldquo
Random effects elliptically distributed in unbalanced linear models
2008
In linear mixed effects models, random effects are used for modelling the variance-covariance structure of the response variable. These models are based on the assumption that the random effects are normally distributed, but in literature alternative random effect distributions have been proposed and the consequences of misspecification are investigated. These studies consider only balanced designs. Aim of this paper is to study an unbalanced linear mixed model with random effects elliptically distributed.
Symmetric locally free resolutions and rationality problems
2022
We show that the birationality class of a quadric surface bundle over $\mathbb{P}^2$ is determined by its associated cokernel sheaves. As an application, we discuss stable-rationality of very general quadric bundles over $\mathbb{P}^2$ with discriminant curves of fixed degree. In particular, we construct explicit models of these bundles for some discriminant data. Among others, we obtain various birational models of a nodal Gushel-Mukai fourfold, as well as of a cubic fourfold containing a plane. Finally, we prove stable irrationality of several types of quadric surface bundles.
A rigidity problem on the round sphere
2015
We consider a class of overdetermined problems in rotationally symmetric spaces, which reduce to the classical Serrin's overdetermined problem in the case of the Euclidean space. We prove some general integral identities for rotationally symmetric spaces which imply a rigidity result in the case of the round sphere.
Complex group algebras of finite groups: Brauer's Problem 1
2007
Abstract Brauer's Problem 1 asks the following: What are the possible complex group algebras of finite groups? It seems that with the present knowledge of representation theory it is not possible to settle this question. The goal of this paper is to present a partial solution to this problem. We conjecture that if the complex group algebra of a finite group does not have more than a fixed number m of isomorphic summands, then its dimension is bounded in terms of m . We prove that this is true for every finite group if it is true for the symmetric groups. The problem for symmetric groups reduces to an explicitly stated question in number theory or combinatorics.