Search results for " tissue engineering."
showing 10 items of 93 documents
Biomaterials and bioactive molecules to drive differentiation in striated muscle tissue engineering
2015
International audience; The generation of engineered tissues and organs has entered into the clinical practice in response to the chronic lack of organ donors. In particular, for the skeletal and cardiac muscles the translational potential of tissue engineering approaches has clearly been shown, even though the construction of these tissues lags behind others given the hierarchical, highly organized architecture of striated muscles. Failure of the cardiac tissue leads to cardiovascular diseases, which are the leading cause of death in the developed world (Di Felice et al., 2014). On the other hand, there are many clinical cases where the loss of skeletal muscle due to a traumatic injury, an…
High-density ZnO Nanowires as a Reversible Myogenic-Differentiation-Switch
2018
Mesoangioblasts are outstanding candidates for stem-cell therapy and are already being explored in clinical trials. However, a crucial challenge in regenerative medicine is the limited availability of undifferentiated myogenic progenitor cells because growth is typically accompanied by differentiation. Here reversible myogenic-differentiation switching during proliferation is achieved by functionalizing the glass substrate with high-density ZnO nanowires (NWs). Specifically, mesoangioblasts grown on ZnO NWs present a spherical viable undifferentiated cell state without lamellopodia formation during the entire observation time (8 days). Consistently, the myosin heavy chain, typically express…
Optimization of a decellularized protocol of porcine tracheas. Long-term effects of cryopreservation. A histological study
2021
[EN] Objective: The aim of this study was to optimize a decellularization protocol in the trachea of Sus scrofa domestica (pig) as well as to study the effects of long-term cryopreservation on the extracellular matrix of decellularized tracheas. Methods: Porcine tracheas were decellularized using Triton X-100, SDC, and SDS alone or in combination. The effect of these detergents on the extracellular matrix characteristics of decellularized porcine tracheas was evaluated at the histological, biomechanical, and biocompatibility level. Morphometric approaches were used to estimate the effect of detergents on the collagen and elastic fibers content as well as on the removal of chondrocytes from …
BIODEGRADABLE POLYASPARTAMIDE-GRAFT-POLYESTER COPOLYMER FOR VASCULAR REGENERATION
2012
Cardiac tissue engineering: a reflection after a decade of hurry
2014
The heart is a perfect machine whose mass is mainly composed of cardiomyocytes, but also fibroblasts, endothelial, smooth muscle, nervous, and immune cells are represented. One thousand million cardiomyocytes are estimated to be lost after myocardial infarction, their loss being responsible for the impairment in heart contractile function (Laflamme and Murry, 2005). The potential success of cardiac cell therapy relies almost completely on the ability of the implanted cells to differentiate toward mature cardiomyocytes. These cells must be able to reinforce the pumping activity of the injured heart in the absence of life-threatening arrhythmias due to electrophysiological incompatibility. Th…
Composites poly-lactic acid - hydroxyapatite scaffolds prepared via Thermally Induced Phase Separation
2013
A facile and eco-friendly route to fabricate poly(Lactic acid) scaffolds with graded pore size
2016
Over the recent years, functionally graded scaffolds (FGS) gaineda crucial role for manufacturing of devices for tissue engineering. The importance of this new field of biomaterials research is due to the necessity to develop implants capable of mimicking the complex functionality of the various tissues, including a continuous change from one structure or composition to another. In this latter context, one topic of main interest concerns the design of appropriate scaffolds for bone-cartilage interface tissue. In this study, three-layered scaffolds with graded pore size were achieved by melt mixing poly(lactic acid) (PLA), sodium chloride (NaCl) and polyethylene glycol (PEG). Pore size distr…
Unseeded Elastomeric Single Leaflets Retain Function and Remodel After Implant In Ovine Pulmonary Outflow Tract
2013
Current materials for heart valve replacement and repair are limited by the inability to grow or remodel. Tissue engineered valves offer the potential to overcome these disadvantages by creating living structures, but is limited by the availability of biocompatible scaffold materials with desirable biomechanical properties. We assessed the in vivo performance of a novel scaffold poly(carbonate urethane) urea (PCUU), fabricated by electrospinning and implanted in the pulmonary outflow tract of sheep. PCUU was electrospun into elastomeric sheets of thickness ranging from 120-180 μm. Using cardiopulmonary bypass we replaced the native anterior pulmonary leaflet with an acellular PCUU leaflet. …
Poly(vinyl alcohol)/κ-Carrageenan-based hydrogels enriched with the adhesive mussel protein Pvfp5β as 3D cell culture scaffold for tissue engineering…
2021
Many marine organisms such as sandcastle worms, barnacles and mussels, produce natural adhesives to attach to wet surfaces in aqueous tidal environments. In mussels, the adhesion is possible through the secretion of a protein-based water-resistant glue, composed of a mixture of proteins called mussel adhesive proteins (MAPs) or mussel foot proteins (mfps), that allow anchoring to almost any kind of surface in wet conditions [1]. The proteins confined to adhesive plaques are mfp-2, -3, -4, -5, and -6. All these proteins contain an atypically high concentration of the catecholic amino acid 3,4- dihydroxy-l-phenylalanine (DOPA), obtained by the post-translational enzymatic hydroxylation of tyr…
Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells.
2015
The use of three-dimensional (3D) cultures may induce cardiac progenitor cells to synthesize their own extracellular matrix (ECM) and sarcomeric proteins to initiate cardiac differentiation. 3D cultures grown on synthetic scaffolds may favour the implantation and survival of stem cells for cell therapy when pharmacological therapies are not efficient in curing cardiovascular diseases and when organ transplantation remains the only treatment able to rescue the patient’s life. Silk fibroin-based scaffolds may be used to increase cell affinity to biomaterials and may be chemically modified to improve cell adhesion. In the present study, porous, partially orientated and electrospun nanometric n…