Search results for " tumor"

showing 10 items of 3819 documents

COVID-19: High-JAKing of the Inflammatory “Flight” by Ruxolitinib to Avoid the Cytokine Storm

2021

Since SARS-CoV-2 outbreak in December 2019, world health-system has been severely impacted with increased hospitalization, Intensive-Care-Unit (ICU) access and high mortality rates, mostly due to severe acute respiratory failure and multi-organ failure. Excessive and uncontrolled release of proinflammatory cytokines (cytokine release/storm syndrome, CRS) have been linked to the development of these events. The recent advancements of immunotherapy for the treatment of hematologic and solid tumors shed light on many of the molecular mechanisms underlying this phenomenon, thus rendering desirable a multidisciplinary approach to improve COVID-19 patients’ outcome. Indeed, currently available th…

0301 basic medicineCancer ResearchRuxolitinibruxolitinibmedicine.medical_treatmentlcsh:RC254-282Proinflammatory cytokine03 medical and health sciences0302 clinical medicineFibrosismedicineMyelofibrosisbusiness.industryferritinhyperinflammationCOVID-19Immunotherapylcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.disease030104 developmental biologyCytokineOncologyJAK2030220 oncology & carcinogenesisImmunologyPerspectivebusinessJanus kinaseCytokine stormmedicine.drug
researchProduct

2-Methoxyestradiol Affects Mitochondrial Biogenesis Pathway and Succinate Dehydrogenase Complex Flavoprotein Subunit A in Osteosarcoma Cancer Cells.

2017

Background/aim Dysregulation of mitochondrial pathways is implicated in several diseases, including cancer. Notably, mitochondrial respiration and mitochondrial biogenesis are favored in some invasive cancer cells, such as osteosarcoma. Hence, the aim of the current work was to investigate the effects of 2-methoxyestradiol (2-ME), a potent anticancer agent, on the mitochondrial biogenesis of osteosarcoma cells. Materials and methods Highly metastatic osteosarcoma 143B cells were treated with 2-ME separately or in combination with L-lactate, or with the solvent (non-treated control cells). Protein levels of α-syntrophin and peroxisome proliferator-activated receptor gamma, coactivator 1 alph…

0301 basic medicineCancer ResearchSIRT3Protein subunitSDHAMuscle ProteinsAntineoplastic AgentsMolecular Dynamics SimulationBiochemistryElectron Transport Complex IV03 medical and health sciences0302 clinical medicineGeneticSettore BIO/10 - BiochimicaCell Line TumorSirtuin 3CoactivatorGeneticsHumansMolecular BiologyOsteosarcomaOrganelle BiogenesisbiologyEstradiolSettore BIO/16 - Anatomia UmanaChemistryElectron Transport Complex IICalcium-Binding ProteinsMembrane ProteinsPeroxisomeMitochondrial biogenesiPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaCell biology2-MethoxyestradiolMitochondriaSuccinate dehydrogenaseMolecular Docking Simulation030104 developmental biologyMitochondrial biogenesisSettore CHIM/03 - Chimica Generale E Inorganica030220 oncology & carcinogenesisSirtuinCancer cellbiology.proteinResearch ArticleCancer genomicsproteomics
researchProduct

A g316a polymorphism in the ornithine decarboxylase gene promoter modulates mycn‐driven childhood neuroblastoma

2021

Simple Summary Neuroblastoma is a devasting childhood cancer in which multiple copies (amplification) of the cancer-causing gene MYCN strongly predict poor outcome. Neuroblastomas are reliant on high levels of cellular components called polyamines for their growth and malignant behavior, and the gene regulating polyamine synthesis is called ODC1. ODC1 is often coamplified with MYCN, and in fact is regulated by MYCN, and like MYCN is prognostic of poor outcome. Here we studied a naturally occurring genetic variant or polymorphism that occurs in the ODC1 gene, and used gene editing to demonstrate the functional importance of this variant in terms of ODC1 levels and growth of neuroblastoma cel…

0301 basic medicineCancer ResearchSNPSingle-nucleotide polymorphismBiologylcsh:RC254-282ArticleOrnithine decarboxylase03 medical and health sciencesneuroblastomaNeuroblastoma0302 clinical medicineNeuroblastomaGenotypeMYCNMedicine and Health SciencesTranscriptional regulationmedicineODC1neoplasmsWild typePromotermedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensMolecular biology030104 developmental biologyOncology030220 oncology & carcinogenesisChildhood Neuroblastoma
researchProduct

Primary and metastatic brain cancer genomics and emerging biomarkers for immunomodulatory cancer treatment

2018

Abstract: Recent studies with immunomodulatory agents targeting both cytotoxic T-lymphocyte protein 4 (CTLA4) and programmed cell death 1 (PD1)/programmed cell death ligand 1 (PDL1) have shown to be very effective in several cancers revealing an unexpected great activity in patients with both primary and metastatic brain tumors. Combining anti-CTLA4 and anti-PD1 agents as upfront systemic therapy has revealed to further increase the clinical benefit observed with single agent, even at cost of higher toxicity. Since the brain is an immunological specialized area it's crucial to establish the specific composition of the brain tumors' micro environment in order to predict the potential activit…

0301 basic medicineCancer ResearchSettore MED/06 - Oncologia Medicamedicine.medical_treatmentBiomarkers; Brain; CTLA4; Immunotherapy; Metastasis; PD1/PDL1GenomicsMetastasiMetastasisMetastasisImmunomodulation03 medical and health sciences0302 clinical medicinemedicineBiomarkers TumorCytotoxic T cellAnimalsHumansCTLA4Primary (chemistry)business.industryPD1/PDL1Brain NeoplasmsImmunogenicityBrainBiomarkerImmunotherapyGenomicsmedicine.diseaseCancer treatment030104 developmental biology030220 oncology & carcinogenesisToxicityCancer researchImmunotherapyHuman medicinebusinessBiomarkersSeminars in cancer biology
researchProduct

Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance

2019

Abstract In the last decades, the role of the microenvironment in tumor progression and therapeutic outcome has gained increasing attention. Cancer-associated fibroblasts (CAFs) have emerged as key players among stromal cells, owing to their abundance in most solid tumors and their diverse tumor-restraining/promoting roles. The interplay between tumor cells and neighboring CAFs takes place by both paracrine signals (cytokines, exosomes and metabolites) or by the multifaceted functions of the surrounding extracellular matrix. Here, we dissect the most recent identified mechanisms underlying CAF-mediated control of tumor progression and therapy resistance, which include induction of the epith…

0301 basic medicineCancer ResearchStromal cellEpithelial-Mesenchymal TransitionParacrine CommunicationAntineoplastic AgentsReviewBiologylcsh:RC254-28203 medical and health sciences0302 clinical medicineCancer-Associated FibroblastsCancer stem cellSettore MED/04 - PATOLOGIA GENERALENeoplasmsParacrine CommunicationTumor MicroenvironmentHumansEpithelial–mesenchymal transitionTumor microenvironmentCancer associated fibroblasts cancer stem cells extracellular matrix exosomes epithelial-to-mesenchymal transition.lcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensMicrovesiclesGene Expression Regulation Neoplastic030104 developmental biologyOncologyTumor progressionDrug Resistance Neoplasm030220 oncology & carcinogenesisCancer researchDisease ProgressionMolecular MedicineCancer-Associated FibroblastsSignal Transduction
researchProduct

Differential distribution and enrichment of non-coding RNAs in exosomes from normal and Cancer-associated fibroblasts in colorectal cancer.

2018

Exosome production from cancer-associated fibroblasts seems to be an important driver of tumor progression. We report the first in-depth biotype characterization of ncRNAs, analyzed by Next Generation Sequencing and Bioinformatics, expressed in established primary human normal and cancer-associated fibroblasts (CAFs) from cancer and normal mucosa tissues from 9 colorectal cancer patients, and/or packaged in their derived exosomes. Differential representation and enrichment analyses based on these ncRNAs revealed a significant number of differences between the ncRNA content of exosomes and the expression patterns of the normal and cancer-associated fibroblast cells. ncRNA regulatory elements…

0301 basic medicineCancer ResearchStromal cellRNA UntranslatedColorectal cancerBiologyExosomeslcsh:RC254-282Non-coding RNAs03 medical and health sciencesCancer-Associated FibroblastsCell MovementNext generation sequencingmedicineBiomarkers TumorHumansLiquid biopsyLetter to the EditorCells CulturedCell ProliferationTumor microenvironmentColon CancerLiquid biopsySequence Analysis RNACancerHigh-Throughput Nucleotide SequencingFibroblastsmedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensPrognosisMicrovesiclesGene Expression Regulation Neoplastic030104 developmental biologyOncologyTumor microenvironmentTumor progressionCancer researchMolecular MedicineCancer-Associated FibroblastsColorectal Neoplasms
researchProduct

HGF/MET Axis Induces Tumor Secretion of Tenascin-C and Promotes Stromal Rewiring in Pancreatic Cancer

2021

Simple Summary It has been previously shown that activation of the MET receptor by its ligand, the hepatocyte growth factor (HGF), modulates the tumor-stroma cross-talk in models of pancreatic cancer. We now wish to cast light on the molecular mechanisms by which this ligand/receptor pair sustains the interaction between cancer cells and the tumor microenviroment. To this end, we compared data obtained by large-scale analysis of gene expression in pancreatic cancer cells grown in the presence of HGF versus cells grown in the presence of HGF and treated with specific inhibitors of HGF/MET signaling. By clustering differentially expressed genes according to functional groups, we identified ca…

0301 basic medicineCancer ResearchStromal cellpancreatic ductal adenocarcinomaArticle03 medical and health sciences0302 clinical medicinePancreatic tumorPancreatic cancerMET oncogenemedicinetumor microenvironmentmetastasisHepatocyte growth factor; MET oncogene; Metastasis; Pancreatic ductal adenocarcinoma; Tenascin C; Tumor microenvironmentRC254-282Tumor microenvironmentbiologyChemistryTenascin Ctenascin CNeoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.disease030104 developmental biologyhepatocyte growth factorOncology030220 oncology & carcinogenesisCancer cellHepatic stellate cellbiology.proteinCancer researchHepatocyte growth factormedicine.drugCancers
researchProduct

Molecular pathway activation – New type of biomarkers for tumor morphology and personalized selection of target drugs

2018

Anticancer target drugs (ATDs) specifically bind and inhibit molecular targets that play important roles in cancer development and progression, being deeply implicated in intracellular signaling pathways. To date, hundreds of different ATDs were approved for clinical use in the different countries. Compared to previous chemotherapy treatments, ATDs often demonstrate reduced side effects and increased efficiency, but also have higher costs. However, the efficiency of ATDs for the advanced stage tumors is still insufficient. Different ATDs have different mechanisms of action and are effective in different cohorts of patients. Personalized approaches are therefore needed to select the best ATD…

0301 basic medicineCancer ResearchSystems biologymutation profilingAntineoplastic AgentsComputational biologyProteomics03 medical and health sciencesNeoplasmsmicroRNABiomarkers TumorHumanscancerMedicineMolecular Targeted TherapyEpigeneticsPrecision MedicineBiomedicinebusiness.industryGene Expression ProfilingCancerbioinformaticsmedicine.diseasePrecision medicinesignaling pathwaysGene Expression Regulation NeoplasticGene expression profilingmachine learning030104 developmental biologyCommentarybusinessSignal TransductionSeminars in Cancer Biology
researchProduct

Integrative Metabolomic and Transcriptomic Analysis for the Study of Bladder Cancer

2019

Metabolism reprogramming is considered a hallmark of cancer. The study of bladder cancer (BC) metabolism could be the key to developing new strategies for diagnosis and therapy. This work aimed to identify tissue and urinary metabolic signatures as biomarkers of BC and get further insight into BC tumor biology through the study of gene-metabolite networks and the integration of metabolomics and transcriptomics data. BC and control tissue samples (n = 44) from the same patients were analyzed by High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance and microarrays techniques. Besides, urinary profiling study (n = 35) was performed in the same patients to identify a metabolomic profi…

0301 basic medicineCancer ResearchTaurinecancer biomarkersBiologycancer metabolic reprogramminglcsh:RC254-282ArticleTranscriptome03 medical and health scienceschemistry.chemical_compoundtranscriptomics0302 clinical medicineMetabolomicsmedicinemetabolic pathwaysTumor metabolomeBladder cancermedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmetabolomicsMetabolic pathway030104 developmental biologyOncologyBiochemistrychemistry030220 oncology & carcinogenesisbladder cancerCancer biomarkersDNA microarraytumor metabolome
researchProduct

Targeting COPZ1 non-oncogene addiction counteracts the viability of thyroid tumor cells

2017

Abstract Thyroid carcinoma is generally associated with good prognosis, but no effective treatments are currently available for aggressive forms not cured by standard therapy. To find novel therapeutic targets for this tumor type, we had previously performed a siRNA-based functional screening to identify genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same extent for the viability of normal cells (non-oncogene addiction paradigm). Among those, we found the coatomer protein complex ζ1 (COPZ1) gene, which is involved in intracellular traffic, autophagy and lipid homeostasis. In this paper, we investigated the mechanisms through which COPZ…

0301 basic medicineCancer ResearchTime FactorsCOPZ1ApoptosisCOPZ1Thyroid cancerThyroid NeoplasmThyroidRNAi TherapeuticCell death; COPZ1; Non-oncogene addiction; Thyroid carcinoma; Animals; Apoptosis; Autophagy; Cell Line Tumor; Cell Survival; Coatomer Protein; Endoplasmic Reticulum Stress; Female; Gene Expression Regulation Neoplastic; Humans; Mice Nude; RNA Interference; Signal Transduction; Thyroid Neoplasms; Time Factors; Transfection; Tumor Burden; Unfolded Protein Response; Xenograft Model Antitumor Assays; RNAi Therapeutics; Oncology; Cancer ResearchEndoplasmic Reticulum StressOncogene AddictionTumor BurdenGene Expression Regulation Neoplasticmedicine.anatomical_structureOncologyFemaleRNA InterferenceNon-oncogene addictionHumanSignal TransductionCell deathProgrammed cell deathXenograft Model Antitumor AssayTime FactorCell SurvivalMice NudeBiologyTransfectionCoatomer ProteinThyroid carcinomaThyroid carcinoma03 medical and health sciencesCell Line TumorAutophagymedicineAnimalsHumansThyroid NeoplasmsEndoplasmic Reticulum StreAnimalAutophagyApoptosimedicine.diseaseXenograft Model Antitumor AssaysRNAi Therapeutics030104 developmental biologyImmunologyUnfolded Protein ResponseCancer researchUnfolded protein response
researchProduct