Search results for "-Laplacian"

showing 10 items of 103 documents

On Boundary Value Problems for ϕ-Laplacian on the Semi-Infinite Interval

2017

The Dirichlet problem and the problem with functional boundary condition for ϕ-Laplacian on the semi-infinite interval are studied as well as solutions between the lower and upper functions.

Dirichlet problem010102 general mathematicsMathematical analysislower and upper functionsMixed boundary conditionMathematics::Spectral Theory01 natural sciencesRobin boundary conditionElliptic boundary value problemϕ-Laplacian010101 applied mathematicssymbols.namesakeModeling and SimulationDirichlet boundary conditionboundary value problemFree boundary problemsymbolsNeumann boundary conditionQA1-939Boundary value problem0101 mathematicsAnalysisMathematicsMathematicsMathematical Modelling and Analysis
researchProduct

(p, 2)-Equations with a Crossing Nonlinearity and Concave Terms

2018

We consider a parametric Dirichlet problem driven by the sum of a p-Laplacian ($$p>2$$) and a Laplacian (a (p, 2)-equation). The reaction consists of an asymmetric $$(p-1)$$-linear term which is resonant as $$x \rightarrow - \infty $$, plus a concave term. However, in this case the concave term enters with a negative sign. Using variational tools together with suitable truncation techniques and Morse theory (critical groups), we show that when the parameter is small the problem has at least three nontrivial smooth solutions.

Dirichlet problem0209 industrial biotechnologyControl and OptimizationMultiple smooth solutionTruncationConcave termApplied Mathematicsp-Laplacian010102 general mathematicsMathematical analysis02 engineering and technology01 natural sciencesTerm (time)Nonlinear system020901 industrial engineering & automationSettore MAT/05 - Analisi MatematicaCrossing nonlinearityNonlinear maximum principle0101 mathematicsLaplace operatorCritical groupNonlinear regularityMorse theoryParametric statisticsMathematicsApplied Mathematics & Optimization
researchProduct

Triple solutions for nonlinear elliptic problems driven by a non-homogeneous operator

2020

Abstract Some multiplicity results for a parametric nonlinear Dirichlet problem involving a nonhomogeneous differential operator of p -Laplacian type are given. Via variational methods, the article furnishes new contributions and completes some previous results obtained for problems considering other types of differential operators and/or nonlinear terms satisfying different asymptotic conditions.

Dirichlet problemApplied Mathematics010102 general mathematicsMultiple solutionsp-LaplacianMultiple solutionType (model theory)Differential operator01 natural sciencesCritical point010101 applied mathematicsNonlinear systemOperator (computer programming)Critical point; Multiple solutions; Nonlinear elliptic problem; p-Laplacian; Variational methodsVariational methodsSettore MAT/05 - Analisi MatematicaNon homogeneousApplied mathematicsNonlinear elliptic problem0101 mathematicsLaplace operatorAnalysisMathematicsParametric statistics
researchProduct

Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence

2016

Abstract The paper focuses on a Dirichlet problem driven by the ( p , q ) -Laplacian containing a parameter μ > 0 in the principal part of the elliptic equation and a (convection) term fully depending on the solution and its gradient. Existence of solutions, uniqueness, a priori estimates, and asymptotic properties as μ → 0 and μ → ∞ are established under suitable conditions.

Dirichlet problemConvectionApplied Mathematics010102 general mathematicsMathematical analysis01 natural sciences(pq)-LaplacianTerm (time)010101 applied mathematicsElliptic curveQuasilinear elliptic equationSettore MAT/05 - Analisi Matematicagradient dependenceasymptotic propertiesPrincipal partA priori and a posterioriUniqueness0101 mathematicsLaplace operatorMathematics
researchProduct

An eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities

2005

AbstractA multiplicity result for an eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities is obtained. The proof is based on a three critical points theorem for nondifferentiable functionals.

Dirichlet problemDiscontinuous nonlinearitiesApplied MathematicsMathematical analysisp-LaplacianMultiple solutionsMathematics::Optimization and ControlDirichlet's energyMathematics::Spectral TheoryEigenvalue Dirichlet problemCritical points of nonsmooth functionsNonlinear systemsymbols.namesakeDirichlet eigenvalueDirichlet's principleRayleigh–Faber–Krahn inequalitysymbolsp-LaplacianEigenvalues and eigenvectorsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data

2018

We prove boundedness and continuity for solutions to the Dirichlet problem for the equation $$ - {\rm{div}}(a(x,\nabla u)) = h(x,u) + \mu ,\;\;\;\;\;{\rm{in}}\;{\rm{\Omega }} \subset \mathbb{R}^{N},$$ where the left-hand side is a Leray-Lions operator from $$- {W}^{1,p}_0(\Omega)$$ into W−1,p′(Ω) with 1 < p < N, h(x,s) is a Caratheodory function which grows like ∣s∣p−1 and μ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Holder-continuous far from the support of μ.

Dirichlet problemElliptic partial differential equations; boundary-value problems; regularity; Hölder-continuityregularityOperator (physics)boundary-value problemsElliptic partial differential equationsHölder-continuityMeasure (mathematics)OmegaCombinatoricsBounded functionRadon measurep-LaplacianNabla symbolMathematics
researchProduct

Multiple solutions for a Dirichlet problem with p-Laplacian and set-valued nonlinearity

2008

AbstractThe existence of a negative solution, of a positive solution, and of a sign-changing solution to a Dirichlet eigenvalue problem with p-Laplacian and multi-valued nonlinearity is investigated via sub- and supersolution methods as well as variational techniques for nonsmooth functions.

Dirichlet problemGeneral MathematicsMathematical analysisNull (mathematics)Multiple solutions Dirichlet problem p-Laplacian set-valued nonlinearitySet (abstract data type)symbols.namesakeGeneralized gradientNonlinear systemDirichlet eigenvalueSettore MAT/05 - Analisi MatematicaDirichlet's principlep-LaplaciansymbolsMathematics
researchProduct

Anisotropic -Laplacian equations when goes to

2010

Abstract In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p -Laplacian equation with respect to a group of variables and as the q -Laplacian equation with respect to the other variables ( 1 p q ), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1 , showing that they converge to a function u , which is almost everywhere finite, regardless of the size of the datum f . Moreover, we prove that this u is the unique solution of a limit problem having the 1-Laplacian operator with respect to the firs…

Dirichlet problemGroup (mathematics)Applied MathematicsMathematical analysisp-LaplacianStandard probability spaceAlmost everywhereFunction (mathematics)Limit (mathematics)Laplace operatorAnalysisMathematicsNonlinear Analysis: Theory, Methods &amp; Applications
researchProduct

Nonlinear elliptic equations having a gradient term with natural growth

2006

Abstract In this paper, we study a class of nonlinear elliptic Dirichlet problems whose simplest model example is: (1) { − Δ p u = g ( u ) | ∇ u | p + f , in Ω , u = 0 , on ∂ Ω . Here Ω is a bounded open set in R N ( N ⩾ 2 ), Δ p denotes the so-called p-Laplace operator ( p > 1 ) and g is a continuous real function. Given f ∈ L m ( Ω ) ( m > 1 ), we study under which growth conditions on g problem (1) admits a solution. If m ⩾ N / p , we prove that there exists a solution under assumption (3) (see below), and that it is bounded when m > N p ; while if 1 m N / p and g satisfies the condition (4) below, we prove the existence of an unbounded generalized solution. Note that no smallness condit…

Dirichlet problemMathematics(all)Pure mathematicsApplied MathematicsGeneral MathematicsWeak solutionNonlinear elliptic operatorsMathematical analysisGradient term; Nonlinear elliptic operators; Unbounded solutionsType (model theory)Elliptic curveElliptic operatorCompact spaceUnbounded solutionsSettore MAT/05 - Analisi MatematicaBounded functionp-LaplacianGradient termMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

A non-homogeneous elliptic problem dealing with the level set formulation of the inverse mean curvature flow

2015

Abstract In the present paper we study the Dirichlet problem for the equation − div ( D u | D u | ) + | D u | = f in an unbounded domain Ω ⊂ R N , where the datum f is bounded and nonnegative. We point out that the only hypothesis assumed on ∂Ω is that of being Lipschitz-continuous. This problem is the non-homogeneous extension of the level set formulation of the inverse mean curvature flow in a Euclidean space. We introduce a suitable concept of weak solution, for which we prove existence, uniqueness and a comparison principle.

Dirichlet problemMean curvature flowMean curvatureApplied MathematicsBounded functionWeak solutionMathematical analysisMathematics::Analysis of PDEsp-LaplacianInverse mean curvature flowUniquenessAnalysisMathematicsJournal of Differential Equations
researchProduct